Gaussian Numbers

Integers

<p>| | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>-3</td>
<td>-2</td>
<td>-1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Gaussian Integers

<p>| | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$-3 + 3i$</td>
<td>$-2 + 3i$</td>
<td>$-1 + 3i$</td>
<td>$3i$</td>
<td>$1 + 3i$</td>
<td>$2 + 3i$</td>
<td>$3 + 3i$</td>
<td>$4 + 3i$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$-3 + 2i$</td>
<td>$-2 + 2i$</td>
<td>$-1 + 2i$</td>
<td>$2i$</td>
<td>$1 + 2i$</td>
<td>$2 + 2i$</td>
<td>$3 + 2i$</td>
<td>$4 + 2i$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$-3 + i$</td>
<td>$-2 + i$</td>
<td>$-1 + i$</td>
<td>i</td>
<td>$1 + i$</td>
<td>$2 + i$</td>
<td>$3 + i$</td>
<td>$4 + i$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>-3</td>
<td>-2</td>
<td>-1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$-3 - i$</td>
<td>$-2 - i$</td>
<td>$-1 - i$</td>
<td>$-i$</td>
<td>$1 - i$</td>
<td>$2 - i$</td>
<td>$3 - i$</td>
<td>$4 - i$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Addition of Gaussian integers

Examples:

\[(1 + i) + 1 = 2 + i\]
\[(1 + i) + i = 1 + 2i\]
\[(1 + i) + (1 + i) = 2 + 2i\]

1. Add \(1 + i\) and \(1 - i\).

2. Connect the points
(a) 0 and \(1 + i\);
(b) 0 and \(1 - i\);
(c) 0 and \((1 + i) + (1 - i)\);
3. Add $1 + 2i$ and 1.

4. Connect the points
 (a) 0 and $1 + 2i$;
 (b) 0 and 1;
 (c) 0 and $(1 + 2i) + 1$;
Multiplication of Gaussian Integers

Examples:

\[1 \times 1 = 1 \]
\[1 \times i = i \]

NOTE:
\[i \times i = -1 \]

5. Multiply \(i \) and \((1 + i) \)

6. Connect the points
 (a) 0 and \(1 + i \);
 (b) 0 and \(i \times (1 + i) \);
7. Multiply i and $(2 + i)$

8. Connect the points
 (a) 0 and $2 + i$;
 (b) 0 and $i \times (2 + i)$;
9. Multiply $1 + i$ and $(1 - i)$

10. Connect the points
(a) 0 and $1 + i$;
(b) 0 and $1 - i$;
(b) 0 and $(1 + i) \times (1 - i)$.
11. Multiply $2 + i$ and $(2 - i)$

12. Connect the points
 (a) 0 and $2 + i$;
 (b) 0 and $2 - i$;
 (b) 0 and $(2 + i) \times (2 - i)$.
13 Multiply $3 + 2i$ and $(3 - 2i)$

14. Connect the points
(a) 0 and $3 + 2i$;
(b) 0 and $3 - 2i$;
(b) 0 and $(3 + 2i) \times (3 - 2i)$.
Prime Numbers

A positive integer p is a prime number if it is divisible only by 1 and by itself.

15. List the prime numbers less than 30.

Square Numbers are

\begin{align*}
1 \times 1 &= 1 \\
2 \times 2 &= 4 \\
3 \times 3 &= 9 \\
&\vdots
\end{align*}

16. List the square numbers up to 200.
17. Which prime numbers can be written as a sum of two square numbers? (Hint: Try the prime numbers up to 30)
18. Compute the absolute value of $2 + i$ squared

$|2 + i|^2 = (2 + i)(2 - i)$.

How is this absolute value related to 2^2 and 1^2?

(b) Compute the absolute value of $3 + 2i$ squared

$|3 + 2i|^2 = (3 + 2i)(3 - 2i)$.

How is this absolute value related to 2^2 and 3^2?

(c) Compute the absolute value of $4 + i$ squared

$|4 + i|^2 = (4 + i)(4 - i)$.

How is this absolute value related to 4^2 and 1^2?)
19. Compute the products and their absolute values squared:

Multiply $1 + i$ and $2 + i$
Multiply $1 - i$ and $2 + i$
Multiply $2 + i$ and $2 + 3i$.
Multiply $2 - i$ and $2 + 3i$.
Multiply $2 + i$ and $4 + i$.
Multiply $2 - i$ and $4 + i$.
Multiply $3 + 2i$ and $4 + i$.
Multiply $3 - 2i$ and $4 + i$.
20. For which two prime numbers can we express their product as a sum of two square numbers?

(Hint: Use questions 18 and 19. Try to express a product of two prime numbers less than 20 as a sum of two square numbers.)
21. In how many ways can we express the product of two prime numbers as a sum of two square numbers?
22. (Difficult problems) In how many ways can you express $5 \times 13 \times 17$ as a sum of two squares? How about $3 \times 5 \times 13$?