The Game of Set

Feb 11th, 2018

1. Let S denote a standard SET deck. S contains one of each possible type of card. How many cards are there in S?

2. How many sets are there in S?

3. Prove the Fundamental Theorem of SET:

 Theorem 1 Given two cards, $x, y \in S$; there is a unique card $z \in S$ for which (x, y, z) is a set.

4. Given two set cards, x and y, define their **product**, $x \star y$, to be the unique card for which $(x, y, x \star y)$ is a set.

 What properties does this multiplication have? Is it commutative? Is it associative? Is there an identity?
5. There should be a correspondence between S and the integers $\{1, 2, ..., 81\}$ by writing the numbers in base 3. How does this correspondence work?

 Hint: Another way to think of this is each card can be though of as a vector (x_1, x_2, x_3, x_4) where each of the x_i are either 0,1 or 2. (How is this the same as thinking in base 3?)

6. By writing elements in S as vectors (or as numbers between 0 and 80 in base 3), determine the set product for these numbers.

 Hint: look at many examples and look at what happens in each component of the vector.

 (The set of vectors above is called \mathbb{Z}_3^4).

7. Compute the following products:
 1. $(1, 0, 0, 0) \star (1, 0, 0, 1) = $
 2. $(0, 1, 0, 0) \star (0, 2, 0, 1) = $
 3. $(2, 2, 2, 2) \star (0, 2, 2, 1) = $
 4. $(0, 0, 0, 0) \star (1, 1, 1, 1) = $

8. Given a card $x \in S$, how many sets does x belong to?

9. Does your answer in Question 8 agree with your answer in Question 2?
10. What is the smallest stack such that every card must have a set in the stack? In other words, you want to deal a number of cards, \(n \), so that you know, without looking at the cards, that every one of those cards is in at least one set. How big must \(n \) be?

11. Now, what is the largest stack with no sets?

Hint. First consider the game of Set with only 2 properties (9 cards in the deck), say shape and number.

12. (Open Question) You can generalize the game of SET by adding more Features, say \(k \); or adding more options in each feature, say we used \(n \) shapes, colors, shadings, etc. Answer the rest of the questions with this new deck of Set cards. (Many of the questions, such as Question 11 have not been answered in this general situation.)