Searching for Chaos

Math Circles - Washington University

Geir Arne Hjelle April 22, 2007

Today we will study the function $f(x)=x^{2}+c$ for different values of c. The expression x^{2} is pronounced " x squared", and simply means that x is multiplied by itself. We could also have written the function as $f(x)=x \cdot x+c$. The graph of our function takes the shape of something called a parabola.

1. First we will study the function $f(x)=x^{2}$ (with $c=0$).

- Draw a parabola in the coordinate system with the opening upwards, symmetric about the y-axis, and its bottom on the x-axis.
(This position of the bottom of the parabola corresponds to the value of c, so here we are setting $c=0$.)

- Choose a point along the x-axis, and mark it with a small circle.

- Draw a vertical line from your chosen point to the parabola.

- Draw a horizontal line from the parabola to the diagonal line.

- Repeat the procedure several times; draw a vertical line from the point on the diagonal to the parabola, and then a horizontal line to the diagonal.

- What happens to your point as you repeat the procedure? If you choose a different starting point, will the same thing happen?

Later we will refer to the process explained above as "drawing a web-diagram for the function".
2. Draw a web-diagram for $f(x)=x^{2}+0.5$.

- To do this, we need to draw a parabola in the coordinate system with its bottom at the line 0.5 units above the x-axis. In the given coordinate systems, that means 5 small squares above the x-axis.
- What will happen for other $c>0.5$? What is the limiting c for this behavior?

3. Draw a web-diagram for $f(x)=x^{2}-0.5$.

- What happens if you choose a starting point directly above/below (or at) one of the points where the parabola and the diagonal line intersect?
- Why is the behavior at the two fixed points different?

4. Draw a web-diagram for $f(x)=x^{2}-1$.

- What happens? Why is our point attracted to 0 and 1 ?

5. Draw a web-diagram for $f(x)=x^{2}-1.5$.

- This should look chaotic! Can we still say something. Are there any points that we surely will not visit?

6. Draw a web-diagram for $f(x)=x^{2}-2$.

- This is true chaos!

7. Draw a web-diagram for $f(x)=x^{2}-1.75$.

- This one is hard, you need to be precise to see the correct behavior (that's because we are dealing with chaos).
- We have found a window of periodicty within the chaos!

8. Can you think of a way to summarize all our findings in one diagram?

The programs we have used today are available on the internet at

