Crypto
It is the science of passing messages and making sure that anyone else who intersepts the message can’t understand it.
The plain text is the unencrypted message.

Idea 1: Substitution Codes - The boneheaded approach

Replace each letter by another letter.  So, we set up a table with two row and 26 columns.  Each letter appears in each row exactly once.  We take the plain text and replace each letter by the letter that appears below it in the table.

We might decide

	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	G
	D
	Y
	V
	S
	B
	W
	Q
	U
	N
	I
	K
	J
	X
	R
	T
	P
	Z
	E
	C
	O
	A
	F
	H
	M
	L


So you & I both know this table and I send the following encrypted message to you:

WRRV GBCSZXRRX.  JM XGJS UE EYRCC YRRI
What’s our message?
GOOD AFTERNOON. MY NAME IS SCOTT COOK.
The table is called the key to the message.

These sorts are codes are actually quite easy to break, especially if the message is long and spaces are preserved.
Any ideas how we might break it?

The main tool to break these is an analysis of how frequently each letter is used.
Idea 2: ONE TIME PADS

Binary – This is what computers use.  We can only use the numbers 0 and 1 and we follow the rules: 0+0=0, 1+0=0+1=1, and 1+1=0.  We will write 0+0=0 mod2, 1+0=0+1=1 mod 2, and 1+1=0 mod 2
The encryption process proceeds in two steps.  First, convert the plain text to binary using the table.  We have at least two standard ways to do this – ASCII or Unicodes.  This doesn’t add any security.  In fact, we’ll just call this binary code the plain text of the message.

Now, suppose the plain text, T, has k digits.  We’ll pick another random k digit binary number.  We call this a pad, denote it by P.  We then form the encrypted message E by adding P to T in the following way:

Let the bits of T be T1, T2, …, Tk and the bits of P be P1, P2, …, Pk.  We let E1=T1+P1 mod 2, E2=T2+P2 mod 2, …, Ek=Tk+Pk mod 2.
Recall that 1+1 mod 2 = 0.  So, another way to think of P is, wherever P has a 1, we flip the bit in T in that bit.  If P has a 0 there, we’ll leave T alone.

Without the pad, E is just garbage and T can’t be recovered, but with P, it is trivial to recover T.
Do example here.  Give kids encrypted message and try to break.  Then give pad.

But, we shouldn’t use a pad more than once.  Here are 2 reasons:

Let’s say we use a pad P, but mess up a little.  We shift the pad to right by one space, so our encrypted message E looks like:

E1=T1+P2
E2=T2+P3

…

Ek=Tk+P1

After sending the message, we realize our error and send a second message, properly encrypted. Call it E’.  Suppose someone intercepts them both.  They can easily break our code.

They can add the bits of E and E’ to see

E1+E’1=T1+P2+T1+P1=P1+P2

E2+E’2=T2+P3+T2+P2=P2+P3

And so on.  Now, they have discovered that only two pads could be the one used to encrypt – either P1=0 or P1=1.  They can simply try both pads – apply them to E and E’ and see which one gets a coherent message.

In the same way, if you properly use the same pad twice, with two different message, you’ve still compromised your security.

Say the two plain texts are T and T’.  Then E=T+P and E’=T’+P.  Then E1+E’1=T1+P1+T’1+P1=T1+T’1.  And so on for every bit.  If we can make a guess about some of the bits of one of the plain texts, say we know that T has a signature and we know the name of the sender, we can get the corresponding bits of T’.  We can’t completely break the code, but we can get some information.
If we use a pad only one time, this method is completely secure.  However, if we want to email a message around the world securely, it’s pretty tough to get a pad to the receiver so she can decode the message.  This method was used in WWII to communicate between FDR and Churchill, but it actually required a person to carry the codes from the US to England.  This is too cumbersome for modern communications.

Idea 3: Public key cryptography
The problem with these first 2 ideas is that we must send 2 different messages – the encrypted message and the key.  And both must be kept secure.  This can be tricky.  So, we’re going to see how to do this without needing 2 secure messages.
To factor a number means to find a bunch of numbers that multiply together to give the number you started with.  So:

60=6*10

60=15*4

60=2*15*2

Recall a prime number is one that has only 1 factorization (7=1*7).  Every non-prime (composite) number has multiple factorizations, but one of these is special.  It is made only of prime numbers.  (60=2*2*3*5).  This is called the “prime factorization.”  In fact, it is the only bunch of primes that multiply together to get 60.  So, every number has one and only one prime factorization.  
This new encryption approach will rely heavily on the following facts:
1) It is easy for a computer to add, subtract, multiply, and divide very large numbers

2) It is fairly easy for a computer to test a large number to see if it’s prime

3) It is extremely difficult for a computer to actually find the pfz for a large number

4) Pfz’s are unique
Say we’re playing a really competitive game of Connect 4.  We’re so good, that we have put limits on the amount of time we can think between moves.  What happens when we have to stop playing during a game (maybe we need to go to bed).  If I have the last move, it wouldn’t be fair if you get to see my last move – you could think about your move all night.  We want a system that both hides the move from you and prevents me from changing my move overnight.

Here’s a scheme to make things fair.  Since there are only 7 moves, we’ll just label the columns 1 thru 7.  When I decide on my move, I won’t actually put my piece in the board.  Instead, I encrypt it using a scheme that we both know.
Step 1) Append a certain number of digits to my move (call this k) so that I have a k+1 digit long prime number.  You know how many digits I’ve added.  Call this k+1 digit number p.  (It’s easy for a computer to find a k+1 digit prime starting with your specified message).
Step 3) Pick another random k digit prime number.  Call this q.  (Again, easy for a computer)
Step 4) Let N=pq.  N has either 2k or 2k+1 digits  (Again, easy for a computer)
Step 5) I give N to you
Step 6) Go to bed

Step 7) In the morning, I’ll give p and q to you.  You check to make sure I haven’t cheated by testing to see if p and q are prime (easy for a computer) and checking to make sure they multiply together to give N (easy for a computer).

Step 8) When you’re satisfied, cut off the extra digits k-digit that I added in step 2 to make p.  This recovers my original move.
Now, could I have cheated?  Suppose I had one move in mind last night, but changed I mind this morning.  I’d need to find a new k+1 digit prime, p’ to encode this new move.  But I already gave you N and you are going to check that the 2 numbers I give you in the morning multiply to give N.  So, I also need another k digit prime q’ such that N=p’*q’.   But we already said that the pfz of N is p*q and pfz’s are unique.  So, p’*q’=/N.  Hence, once I give you N, I can only give you my original p and q the next morning.  I can’t change my mind.  So I can’t cheat.
Note here that I may be able to find two numbers p’ & q’ such that p’*q’=N, but they can’t both be prime.

Could you cheat?  You have my N; all you need to do is factor it.  Find p and q. 
Let’s try.  Let’s say we agree that k=1.  So I take my move, add a number so that I get a prime p with 2 digits.  I pick another 1 digit prime, multiply them, and give you the result.  (k=1, p=67, q=5)  So, my N=67*5=335.  What was my move?

Alright, that wasn’t a good system.  Let’s try k=2.  (k=2, p=353, q=41).  N=14473.  What’s my move?
Why is this harder?  You are probably taking my N and just dividing it by all the k digit primes.  That’s easy for k=1 because there aren’t many of them.  For k=2, it’s harder because there are more.  What will happen for k=3?  It’ll take you all day.

p=4691, q=503, N=2,359,573

Still, a computer could do k=3 in a second.  But for k=400,

for example, if you made all the computers in the world work together, and they got to start when the universe began, they probably still wouldn’t be done.

So, effectively you can’t cheat because the task you must perform just takes too long.  My protection from you is not like your protection from me.  It is impossible for me to cheat; it’s just really hard for you to cheat.  This is the part that makes people nervous.  It is possible for you to break my code – it’s just really really hard.  Our protection is not certain.  You might either just get lucky and guess the correct q or you might develop a really good computer that does this stuff really fast.
PASSWORDS

Do I really need to give you N, p, and q?  If you know N and p, you can easily find q.  N/p is easy for a computer.  So, all you need to verify is that N/p exists (i.e. p|N) and that N/p is prime.  The actual value of q is not particularly important.
This observation is the secret behind password protection.  The weak link in a password system is that the system administrator has access to the information that is stored.  He could easily exploit that information, unless we somehow make the information worthless to him.  Here’s how we do it:

You pick a password and the system turns it into a 200 digit prime number using some process.  The systems then generates another 201 digit prime at random, multiples it by your password to get N.  The 2nd prime is then discarded.  You retain your password and the system stores N.

When you enter your password, the system uses the same process to turn it into a 200 digit prime and then takes your stored N and divides it by this 200 digit prime.  The system checks to see if the result is a prime.  If yes, it grants you access.

Now the unethical system admin only has access to N.  He can’t do anything with it because he’d need to find its 2 prime factors to extract your password.  Again, finding the pfz is very hard.

There is a question to be addressed.  We keep saying, “Find a prime with 200 digits.”  “Turn this message into a prime with 201 digits”  etc.  How do we know we can do this?

Say our message is 1163.  Say our process to turn this message into a prime is to put these 4 digits in front and then some 196 digit string of numbers to stick on the end that makes a 200 digit prime.  We need to know that there is such a number – a prime with 200 digits that starts with 1163.  Here’s one:

116300….000371.  Well, that one is not very complicated.  We might want a stronger one.

Recall that we showed that n/ln n rule about the number of primes less than n.  Using this, we find that there are about 1.95e193 such primes.  Great.  In fact, of all the numbers with 200 digits starting with 1163, about 1 in 460 are prime.  So, to get our number, simply add 196 random digits to the end of 1163.  Test to see if this is prime.  If not, throw that string out and try again.  You won’t need to repeat too often before you find one.  A computer will do it in a few seconds.
