
CHINESE REMAINDER THEOREM
MATH CIRCLE AT WASHINGTON UNIVERSITY IN ST. LOUIS, APRIL 19, 2009

Baili MIN

In a third-centry A. D. Chinese book “Sun Tzu’s Calculation Classic” one problem
is recorded which can be translated into English as:

Suppose we have an unknown number of objects. When counted in threes,
2 are left over, when counted in fives, 3 are left over, and when counted in
sevens, 2 are left over. How many objects are there?

For today’s adventure we are going to explore the solutions to this kind of problems
to see if we can learn some general method. Let’s go!

1 “I wandered lonely as a cloud,
That floats on high o’er vales and hills”

Problem 1.1 Find the smallest positive integer d1 that can be evenly divided by 5 and
7 but has remainder 1 when divided by 3.

Remark: There are some notations we will use a lot later. If you divide 5 by 3 you
get the remainder 2, so we write 5 ≡ 2 (mod 3). More generally, if you divide x by z
and get a remainder y, so we can imagine that x = y + k × z for some integer k, and
therefore we write x ≡ y(mod z). (Notice the positions for x, y and z.)

Perhaps you want to do some exercises before putting your hands on this problem.

5 ≡ ©(mod 2)
8 ≡ ©(mod 3)

100 ≡ ©(mod 7)

So far so good? Return to the problem, then notations for those conditions are:

d1 ≡ 1(mod 3)
d1 ≡ 0(mod 5)
d1 ≡ 0(mod 7)
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What to do next?

Hint: The condition of being exactly divided 5 and 7 is equivalent to that being
exactly divided by 35 = 5 × 7, or d1 is a multiple of 35, or d1 = k × 35 where
k = 1, 2, 3, · · · . So for this condition, you can write a list of numbers:

Then from those numbers, just pick the smallest number which satisfies the first
condition: the remainder of d1 divided by 3 is 1, or d1 ≡ 1(mod 3). So, what is your
answer?

We can do more similar problems, and these problems(together with the previous
one) will help us to solve the classic problem at the beginning.

Problem 1.2 Find the smallest positive integer d2 which is evenly divided by 3 and
7(or mathematically d2 ≡ 0(mod 3) and d2 ≡ 0(mod 7)) and its remainder if divided
by 5 is 1(or mathematically d2 ≡ 1(mod 5)).

Hint: Again, from the last two conditions, you can write a list of numbers which are
multiples of (some integer you want to find), or of the form k×© where k = 1, 2, · · · .
(How to fill in this circle? Refer to the first step in the previous problem.)

Then from those numbers, just pick the smallest number which satisfies the first
condition: the remainder of d2 divided by 5 is 1 or d2 ≡ 1(mod 5). So, what is your
answer?

One more:

Problem 1.3 Find the smallest positive integer d3 such that
d3 ≡ 0(mod 3), d3 ≡ 0(mod 5)) and d3 ≡ 1(mod 7).

Hint: What do the three conditions tell us?

Same steps as in the previous two problems. But remember to make some necessary
modifications.
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Problem 1.4 Now go to our classic problem, which reads mathematically:

Suppose x is a positive integer and it satisfies three conditions:
x ≡ 2(mod 3), x ≡ 3(mod 5) and x ≡ 2(mod 7). Find such x.

We solve that in the following way:

The remainders are different from those three problems we have done. Calculuate
the number d = 2× d1 + 3× d2 + 2× d3.

Does d solve our classic problem?

Does d− 2× 105, if d > 2× 105, solve the problem?

Does d− 105, if d > 105, solve the problem?

Does d + 105 also solve the problem?

Does d + 2× 105 also solve the problem?

Does d + 3× 105 also solve the problem?

Does d + 10× 105 also solve the problem?

Now can you guess what the for the general expression for the solution to our
classic problem is?

If you have got an expression as X = Y + k × Z, where k is any integer, you can
reexpress it as a shorter mathematical formula: X ≡ Y (mod Z). After you finish this,
please turn to the next page to compare the result. :)
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2 “More welcome notes to weary bands,
Of travellers in some shady haunt,
Among Arabian sands.”

“Sun Tzu’s Calculation Classic” provided the solution: “ those integers x with x ≡
233(mod 105).” But this is only true for that specific problem with those divisors and
remainders. What if we change the divisors and remainders? It didn’t say.

In his book “Mathematical Treatise in Nine Sections” written in 1247 A. D. , a
Chinese mathematician Jiushao QIN gave an algorithm which could be used to solve
more generalized problem. This is the origin of “Chinese Remainder Theorem”.

Notice the number 105, it can be factorized as 105 = 3 × 5 × 7. So to summarize
what we have done:

Step 1 Solve those three problems separately. (We solved three things: d1 ≡
1(mod 3) but is a multiple of 5 × 7; d2 ≡ 1(mod 5) but is a multiple of 3 × 7 and
d3 ≡ 1(mod 7) but is a multiple of 3× 5.)

Step 2 Multiply the remainder of those results respectively and find their sum-
mation d. (d1 corresponds to the divisor 3, whose remainder is 2, so we have 2 × d1;
d2 corresponds to the divisor 5, whose remainder is 3, so we have 3 × d2 and d3 cor-
responds to the divisor 7, whose remainder is 2, so we have 2 × d3, and putting these
together we get the summation d = 2× d1 + 3× d2 + 2× d3.)

Step 3 Find the product of these divisors, denoted by m. (m = 3× 5× 7 = 105
in the previous case.)

Step 4 Express the final solution x by the formula x ≡ d(mod m). (like x ≡
233(mod 105).)

One remark is that this expression contains ALL solutions to this problem. You
may spend some time checking integers from 1 to 500, and will see that there are no
exceptions.
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We will continue to explore this method.

Problem 2.1 Suppose x is an integer which satisfies x ≡ 1(mod 3), x ≡ 2(mod 11)
and x ≡ 3(mod 17). Find all such x.

Step 1 Solve those three problems separately:

d1 ≡ 1(mod 3) and d1 ≡ 0(mod © ×©), or equivalently d1 = k × © ×©
where k is any integer:

d2 ≡ 1(mod 11) and d2 ≡ 0(mod ©×©), or equivalently d2 = k ×© ×©
where k is any integer:

d3 ≡ 1(mod 17) and d3 ≡ 0(mod ©×©), or equivalently d3 = k ×© ×©
where k is any integer:

Step 2 Find d.

d = ©× d1 +©× d2 +©× d3 =

Step 3 Find m.

m = ©×©×© = ©

Step 4 Express the final solution.

x = ©+ k ×©, where k is any integer or x ≡ ©(mod ©)

You should list some numbers from your final expression and verify that they solve
the problem!
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3 “Sometime too hot the eye of heaven shines,
And often is his gold complexion dimm’d”

Is this method alway valid? Let’s try this problem:

Problem 3.1 Suppose x is a positive integer which satisfies x ≡ 1(mod 2), x ≡
1(mod 4) and x ≡ 1(mod 5). Find all such x.

By our previous method, what do you get?

Have troubles? Please turn to the next page.
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I am guessing that you were stuck at even the first step using the previous method:
you should get d1 ≡ 1(mod 2) and d1 ≡ 0(mod 4 × 5). But for the first condition we
know that d1 should be an odd number, and for the second one we know that d1 should
be an even number. Obviously, that is impossible!

So, what went wrong?

For our first project, the divisors are 3, 5 and 7. You can see that for each pair of
them, they are coprime, that is, the common divisor is only 1. For the second project,
the divisors are 3, 11 and 17, each pair of which is still coprime. But is that the same
for the third project? Very unfortunately, no, because of 2, 4 and 5, the pair of 2 and 4
is not coprime as 2 is a common divisor for both of them.

Actually for that method we require that all divisors are pairwise coprime.

What if not all pairs are coprime? The idea is natural: “convert” them so that they
are coprime. But the process is a little complicated and tricky. We will see that from
the following problem.

Problem 3.2 List all numbers x greater or equal to 1 but less than 30, such that
(a) x ≡ 1(mod 2)
(b) x ≡ 1(mod 4).
Can you see some relation between those two groups of numbers?

Problem 3.3 So one condition is unnecessary and you can drop it. What is it?

Problem 3.4 Now after dropping the unnecessary condition, are the divisors pairwise
coprime?

Problem 3.5 If so, apply our original method again. What solutions can you get?

7



4 “And then, there were none.”

Let’s continue with the trick of converting divisors which are not pairwise coprime.
The big problem we are going to solve is actually from the course Number Theory and
Polynomials I took in my college.

Solve for x which satisfies x ≡ 3(mod 8), x ≡ 11(mod 20), and x ≡
1(mod 15).

We are going to crack it by solving the following problems:

Problem 4.1 Find a positive integer i1 such that x ≡ 11(mod 4) is equivalent to x ≡
i1(mod 4).

Hint: Filling the circles: x ≡ 11(mod 4) means

x = 11 + k × 4
= ©+ 2× 4 + k × 4 (breaking 11 into two parts)
= ©+ (k + 2)× 4

So x ≡ 11(mod 4) is equivalent to x ≡ ©(mod 4), thus i1 is just the number ©.

Problem 4.2 Find a positive integer i2 such that x ≡ 11(mod 5) is equivalent to x ≡
i2(mod 4).

Hint: Filling the circles: x ≡ 11(mod 5) means

x = 11 + k × 5
= ©+ 2× 5 + k × 5 (breaking 11 into two parts)
= ©+ (k + 2)× 5

So x ≡ 11(mod 5) is equivalent to x ≡ ©(mod 5), thus i2 is just the number ©.

One important result we need to know is x ≡ 11(mod 20), or x ≡ 11(mod 4 × 5)
is equivalent to two equations: x ≡ 11(mod 4) and x ≡ 11(mod 5).

And I believe you have simplified the last two equations. So now we have an
equivalent series of conditions(fill in those circles):

x ≡ 3(mod 8), x ≡ ©(mod 4), x ≡ ©(mod 5) and x ≡ 1(mod 15)

8



Examine the first two conditions:

Problem 4.3 x ≡ 3(mod 8) and x ≡ ©(mod 4)(© is whatever you got previously)
can be reduced to one condition. What is that?

Hint: Refer to a problem on Page 7. So your answer would be x ≡ ©(mod ©).

Before rushing to the next step, we summarize what we have done so far: The
original conditions are now converted to:

x ≡ ©(mod ©), x ≡ ©(mod 5) and x ≡ 1(mod 15)

Very unluckily, 5 and 15 are still not relatively coprime. So there is still some work
to do. We want to convert the case for the divisor 15 = 3× 5

Problem 4.4 x ≡ 1(mod 15) is equivalent to two equations: x ≡ i3(mod 3) and
x ≡ i4(mod 5). Find positive integers i3, which should be less or equal to 3, and i4,
which should be less or equal to 5.

Hint: Momicing the stated result at the bottom on Page 8, you should guess
x ≡ ©(mod 3) and x ≡ ©(mod 5). Make sure your two numbers are no greater than
3 and 5 respectively.

Again, we summerize that the new conditions we need to consider to solve the
problem are(fill in those circles):

x ≡ ©(mod ©), x ≡ ©(mod 5), x ≡ ©(mod 3) and x ≡ ©(mod 5)

Notice that the second and the fourth should be identical. Otherwise you must have
made some mistakes somewhere. For those two identical conditions, you can just cross
one of them out. After you get your results, you can turn to the next page to check.
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The new conditions are x ≡ 3(mod 8), x ≡ 1(mod 5) and x ≡ 1(mod 3). Now we
are able to solve our final problem:

Problem 4.5 Find x which satisfies x ≡ 3(mod 8), x ≡ 1(mod 5) and x ≡ 1(mod 3).

Just momic the steps on Page 5(Ah, a good chance to review the method!). Try to
solve this problem here. And, since this problem is under equivalent conditions as the
problem on Page 8, we can kill two birds with one stone! :D
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5 “And miles to go before I sleep,
And miles to go before I sleep.”

The mathematics related ito this topic is something about congruence relation, or even
further, something about rings, ideals. if you are interested, you may try to read some
textbooks on number theory. You don’t need any calculus knowledge to do that.
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