1-Find few pairs (x, y) that satisfy this equation $3 x+y=0$
Draw the pairs on the plane, connect them together, see what you will get.

2-Do the same for the equation $x-2 y-1=0$

3- Find few pairs (x, y) that satisfy the equation $x^{2}-y=0$, Draw them on the plane and see what you get.

4- Now find pairs (x, y) satisfying the above equation and such that x and y are RATIONAL.

5-Try to find integers $\mathrm{x}, \mathrm{y}, \mathrm{z}$ such that $x^{2}+y^{2}=z^{2}$
(so we are looking for triples ($\mathrm{x}, \mathrm{y}, \mathrm{z}$) that satisfy Pythagorean property)

6- Let's make sure we know what is the graph of this equation $x^{2}+y^{2}=1$ (so again find a few points satisfying the equation and draw it)

7- Divide each triple ($\mathrm{x}, \mathrm{y}, \mathrm{z}$) that you got in problem 5 by z^{2}. Are they related to the equation $x^{2}+y^{2}=1$?

8- Now consider the following rational points: $(16 / 65,63 / 65)$ and $(20 / 29,21 / 29)$ a-Check if they are on the circle or not.
b-Then using these two points, try to find two triple ($\mathrm{x}, \mathrm{y}, \mathrm{z}$) that satisfy the Pythagorean property.

Which equation represents an elliptic curve? Why?
a- $y^{2}=x(x-1)(x+1)$
b- $y^{2}=x^{2}(x-1)$

