NUMBER THEORY AND CODES
 Álvaro Pelayo WUSTL

Talk Goal

To develop codes of the sort

- can tell the world how to put messages in code (public key cryptography)
- only you can decode them

Structure of Talk

Part I: Number theory background

Part II: RSA Codes

- \mathbf{R} for Ronald Rivest
- S for Adi Shamir
- A for Leonard Adleman

PART I: NUMBER THEORY BACKGROUND

Integer Numbers

$\ldots \ldots,-3,-2-1,0,1,2,3,4,5, \ldots \ldots$

Divisibility

s is a divisor of t if there is an integer k such that

$$
t=k \cdot s
$$

Examples

- 1 is a divisor of every number m, since $m=m \cdot 1$
- 3 and 4 are divisors of 12 since $12=3 \cdot 4$
- 3 is not a divisor of 10 since

$$
10=k \cdot 3
$$

is never true, for k integer

Prime Numbers

an integer p greater than 1 is prime if the only divisors of p are 1 and p
$2,3,5,7,11,13,17,19,23,29, \ldots$

Not prime

- 4 because 2 is divisor
- 6 because 2 and 3 are divisors
- 8 because 2 and 4 are divisors

Factorization into primes

Any positive integer m can be written uniquely as

$$
m=p_{1}^{k_{1}} \cdot p_{2}^{k_{2}} \cdot p_{3}^{k_{3}} \cdots p_{n}^{k_{n}}
$$

with $p_{1}, p_{2}, p_{3}, \ldots, p_{n}$ primes and

$$
1<p_{1}<p_{2}<p_{3}<\ldots<p_{n}
$$

Examples

- $8=2^{3}$
- $12=2^{2} \cdot 3$
- $28=2^{2} \cdot 7$
- $90=2 \cdot 3^{2} \cdot 5$

Greatest common divisor of a, b, call it $\operatorname{gcd}(a, b)$

- Look at the list of divisors of a
- Look at the list of divisors of b
- $\operatorname{gcd}(a, b)$ is the greatest number which is in both lists

Example: what is $\operatorname{gcd}(8,12)$?

- Divisors of 8: 1, 2, 4, 8
- Divisors of 12: 1, 2, 3, 4, 6, 12
- Common divisors of 8 and 12: 1, 2, 4
- $\operatorname{gcd}(8,12)=4$

Very slow method if a, b large, need better method:
Euclidean Algorithm

Euclidean Algorithm

Goal: given a, b, to find $\operatorname{gcd}(a, b)$

- Step 1: divide large number by small number
- Step 2: divide small number by remainder
- Step 3: keep dividing until 0 remainder

One can verify: $\operatorname{gcd}(a, b)=$ last nonzero remainder

Example: take $a=1001, b=343$.

$$
\begin{gathered}
1001=2 \cdot 343+315 \\
343=1 \cdot 315+28 \\
315=11 \cdot 28+7 \\
28=4 \cdot 7+0 \\
\operatorname{gcd}(1001,343)=7
\end{gathered}
$$

Algorithm Backwards:

$$
\begin{aligned}
\operatorname{gcd}(a, b)=7 & =315-11 \cdot 28 \\
& =315-11(343-1 \cdot 315) \\
& =12 \cdot 315-11 \cdot 343 \\
& =12(1001-2 \cdot 343)-11 \cdot 343 \\
& =12 \cdot 1001-35 \cdot 343 \\
& =12 \cdot a+(-35) \cdot b
\end{aligned}
$$

Congruence between two numbers

$$
a \equiv b \quad(\bmod N) \quad \text { if } N \text { is a divisor of } b-a
$$

Examples:

- $16 \equiv 1(\bmod 3)$
- $21 \equiv 5(\bmod 8)$

Number modulo an integer (slightly informal)

$$
\begin{aligned}
& {[a]_{N}:=\text { remainder of dividing } a \text { by } N} \\
& \qquad 0 \leq[a]_{N}<N
\end{aligned}
$$

($a \geq 0$, otherwise add a multiple of N to a)
Examples:

- $[10]_{2}=0,[17]_{5}=2,[32]_{5}=2,[-4]_{10}=6,[-47]_{5}=3$
- $[17,213]_{10}=3,[43,596]_{100}=96$
- If $0 \leq a<N,[a]_{N}=a$, for example:

$$
[1]_{4}=1,[2]_{4}=2,[3]_{4}=3
$$

From the definition: $[a]_{N}=[b]_{N}$ if and only if $a \equiv b(\bmod N)$ Also: $[a \cdot b]_{N}=[a]_{N} \cdot[b]_{N}, \quad[\mathrm{a}+\mathrm{b}]_{N}=[a]_{N}+[b]_{N}$

PART II: RSA MESSAGE ENCODING

From words to numbers

- $A=01$
- $B=02$
- . . .
- $Z=26$
- 00 for space

A message is large number, about 200 digits

Example of message

$$
x=\text { THIS COURSE IS NICE }
$$

in code is

$$
x=20080919000314211819050009190014090305
$$

Idea of RSA Codes

- Start with: message x ($\simeq 200$ digits),
- Construct: Encoding Function
$E\left([\text { integer }]_{N}\right)=[\text { another integer }]_{N}$
(N is a large number of our choice, about 10^{200} digits)
- You send: encoded message $E\left([x]_{N}\right)$
- Receiver gets: $E\left([x]_{N}\right)$
- Receiver decodes it using the inverse of E, call it D

$$
D\left(E\left([x]_{N}\right)\right)=[x]_{N}
$$

Properties E and D must satisfy

- E easy to calculate (PUBLIC)
- D hard to calculate (SECRET)
- Easy: small computer time (<1 second)
- Hard: large computer time (quadrillions of years)

How does one find

Encoding Function E ?
 and

Decoding Function D ?

Using the method invented by

Rivest, Shamir and Adleman:
RSA method

RSA method to find E and D

- Step 1. Choose large prime numbers p, q ($\simeq 100$ digits) Example. $p=11, q=13$,
- Step 2. Let $N=p \cdot q$

Example. $N=p \cdot q=11 \cdot 13=143$

- Step 3. Let $A=(p-1) \cdot(q-1)$

Example. $A=(p-1) \cdot(q-1)=(11-1) \cdot(13-1)=120$

- Step 4. Pick $1 \leq e<A$ with $\operatorname{gcd}(e, A)=1$

Example. $e=53$ no common divisors with $A=120$

Step 5. Define the Encoding Function

$$
E\left([x]_{143}\right)=\left[x^{e}\right]_{143}
$$

Example.

$$
E\left([x]_{143}\right)=\left[x^{53}\right]_{143}
$$

(From now on, we will write to $\left[x^{53}\right]_{143}=\left[x^{53}\right]$)

Observation:

$$
\left[x^{e}\right]=[x \cdot \ldots(\mathrm{e} \text { times }) \ldots \cdot x]
$$

- Step 6. Find the solution $1 \leq d<A$ to $e \cdot d \equiv 1(\bmod A)$ Euclidean Algorithm backwards for e, A gives d, f :

$$
e \cdot d+A \cdot f=\operatorname{gcd}(e, A)=1
$$

hence $e \cdot d=1-A \cdot f$, and therefore

$$
e \cdot d \equiv 1(\bmod A)
$$

Example. Need to solve $53 \cdot d \equiv 1(\bmod 120)$

$$
\begin{aligned}
& 120= 2 \cdot 53+14 \\
& 53=3 \cdot 14+11 \\
& 14=1 \cdot 11+3 \\
& 11=3 \cdot 3+2 \\
& 3=1 \cdot 2+1 \\
& 2=2 \cdot 1+0, \quad \text { hence } \\
& 1= 3-2 \\
& 1=3-(11-3 \cdot 3) \\
&= 4 \cdot 3-11 \\
&= 4(14-11)-11 \\
&= 4 \cdot 14-5 \cdot 11 \\
&= 4 \cdot 14-5(53-3 \cdot 14) \\
&= 19 \cdot 14-5 \cdot 53 \\
&= 19(120-2 \cdot 53)-5 \cdot 53 \\
&= 19 \cdot 120-43 \cdot 53, \quad \text { hence }
\end{aligned}
$$

$$
\begin{gathered}
(-43) \cdot 53=1-19 \cdot 120 \\
(-43) \cdot 53 \equiv 1 \quad(\bmod 120) \\
\text { Since }[-43]_{120}=[77]_{120}, \\
d=77
\end{gathered}
$$

- Step 7. Define the Decoding Function

$$
D([x])=\left[x^{d}\right]
$$

Example.

$$
D([x])=\left[x^{77}\right]
$$

End of RSA Method

Why is D the inverse of E ?

$$
D(E([x]))=E(D([x]))=\left[x^{e \cdot d}\right]
$$

Using a theorem (by Fermat) one can check:

$$
\left[x^{e \cdot d}\right]=[x]
$$

Computation of encoded message $E([97])=[97]^{53}$
Step 1. Decompose $e=53$ in sum of powers of 2

$$
53=32+16+4+1=2^{5}+2^{4}+2^{2}+2^{0}
$$

Step 2. Express $E([97])$ as a product

$$
\begin{aligned}
E([97]) & =[97]^{53}=[97]^{1+4+16+32} \\
& =[97]^{1} \cdot[97]^{4} \cdot[97]^{16} \cdot[97]^{32}
\end{aligned}
$$

Step 3. Compute [97] to the above powers of 2

$$
\begin{gathered}
{[97]^{2}=[-46]^{2}=[2116]=[114]=[-29]} \\
{[97]^{4}=[-29]^{2}=[841]=[126]=[-17]} \\
{[97]^{8}=[-17]^{2}=[289]=[3]} \\
{[97]^{16}=[3]^{2}=[9]} \\
{[97]^{32}=[9]^{2}=[81]=[-62]}
\end{gathered}
$$

Step 4. Final computation

$$
\begin{aligned}
E([97]) & =[97]^{53} \\
& =[97]^{1} \cdot[97]^{4} \cdot[97]^{16} \cdot[97]^{32} \\
& =[97] \cdot[-17] \cdot[9] \cdot[-62] \\
& =[-46] \cdot[-17] \cdot[9] \cdot[-62] \\
& =-[46 \cdot 17] \cdot[9 \cdot 62] \\
& =[782] \cdot[558] \\
& =-[67][-14] \\
& =[67 \cdot 14]=[938]=[80]
\end{aligned}
$$

Computation of decoded message $D([80])=[80]^{77}$

Using same method as earlier
$77=1+4+8+64$

$$
\begin{aligned}
{[80]^{77} } & =[80] \cdot[80]^{4} \cdot[80]^{8} \cdot[80]^{64} \\
& =[80] \cdot[-62] \cdot[-17] \cdot[-62] \\
& =[1360] \cdot[3884] \\
& =-[73] \cdot[-17] \\
& =[73] \cdot[17] \\
& =[1241] \\
& =[97]
\end{aligned}
$$

The original message!

Exercise 1: In constructing a code with $p=17, q=19$ suppose that the encoding exponent is $e=35$. What should the decoding exponent d be?

Exercise 2:
(A) Decode the message 127 using the code in exercise 1.
(B) Encode the message found in (A), and check the result is precisely 127.

How can one break the code?

- If can factor N into $p \cdot q \rightarrow$ can find d, and function D
- TELL e, N everyone: they can send encoded messages
- KEEP d secret: you only can decode them
- <1 sec to find $E([x])$ if e known, or $D([x])$ if d known
- quadrillions of years to find $D([x])$ if d NOT known (based on current known algorithms)

ADDITIONAL MATERIAL: Verification that D is inverse of E

Need: Fermat's little theorem: if p is prime and $[a]_{p} \neq 0, a^{p-1} \equiv 1 \bmod p$

First, $D(E([x]))=D\left(\left[x^{e}\right]\right)=\left[\left(x^{e}\right)^{d}\right]=\left[x^{d \cdot e}\right]$

We want to check: $\left[x^{d \cdot e}\right]=[x]$, equivalently $x^{d \cdot e}-x \equiv 0(\bmod N)$
Hence we need to check that $N=p \cdot q$ is a divisor of $x^{d \cdot e}-x$ Enough to check that p is divisor of $x^{d \cdot e}-x$, i.e. $\left[x^{d \cdot e}-x\right]_{p}=0$

We know:
$d \cdot e \equiv 1 \bmod A$, so there exists k such that $d \cdot e=1+k \cdot A$ Since $A=(p-1) \cdot(q-1), k \cdot A=(p-1) \cdot m$, where $m=k \cdot(q-1)$

Therefore:

$$
\begin{aligned}
& x^{d \cdot e}-x=x^{1+k \cdot A}-x=x\left(x^{k \cdot A}\right)-x=x\left(x^{(p-1) \cdot m}\right)-x= \\
& x\left(x^{p-1}\right)^{m}-x \\
& {\left[x^{d \cdot e}-x\right]_{p}=\left[x\left(x^{p-1}\right)^{m}-x\right]_{p}=\left[x(1)^{m}-x\right]_{p}=[x(1)-x]_{p}=0}
\end{aligned}
$$

