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Talk Goal

To develop codes of the sort

• can tell the world how to put messages in code

(public key cryptography)

• only you can decode them

Structure of Talk

Part I: Number theory background

Part II: RSA Codes

• R for Ronald Rivest

• S for Adi Shamir

• A for Leonard Adleman
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PART I: NUMBER THEORY BACKGROUND

Integer Numbers

. . . . . . , −3, −2 − 1, 0, 1, 2, 3, 4, 5, . . . . . .

Divisibility

s is a divisor of t if there is an integer k such that

t = k · s

Examples

• 1 is a divisor of every number m, since m = m · 1

• 3 and 4 are divisors of 12 since 12 = 3 · 4

• 3 is not a divisor of 10 since

10 = k · 3
is never true, for k integer
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Prime Numbers

an integer p greater than 1 is prime if

the only divisors of p are 1 and p

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, . . .

Not prime

• 4 because 2 is divisor

• 6 because 2 and 3 are divisors

• 8 because 2 and 4 are divisors

• . . .
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Factorization into primes

Any positive integer m can be written uniquely as

m = pk1

1 · p
k2

2 · p
k3

3 · · · p
kn

n

with p1, p2, p3, . . . , pn primes and

1 < p1 < p2 < p3 < . . . < pn

Examples

• 8 = 23

• 12 = 22 · 3

• 28 = 22 · 7

• 90 = 2 · 32 · 5
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Greatest common divisor of a, b, call it gcd(a, b)

• Look at the list of divisors of a

• Look at the list of divisors of b

• gcd(a, b) is the greatest number which is in both lists

Example: what is gcd(8, 12)?

• Divisors of 8: 1, 2, 4, 8

• Divisors of 12: 1, 2, 3, 4, 6, 12

• Common divisors of 8 and 12: 1, 2, 4

• gcd(8, 12) = 4

Very slow method if a, b large, need better method:

Euclidean Algorithm
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Euclidean Algorithm

Goal: given a, b, to find gcd(a, b)

• Step 1: divide large number by small number

• Step 2: divide small number by remainder

• Step 3: keep dividing until 0 remainder

One can verify: gcd(a, b) = last nonzero remainder

Example: take a = 1001, b = 343.

1001 = 2 · 343 + 315

343 = 1 · 315 + 28

315 = 11 · 28 + 7

28 = 4 · 7 + 0

gcd(1001, 343) = 7

Algorithm Backwards:

gcd(a, b) = 7 = 315− 11 · 28
= 315− 11(343− 1 · 315)
= 12 · 315− 11 · 343
= 12(1001− 2 · 343)− 11 · 343
= 12 · 1001− 35 · 343
= 12 · a + (−35) · b
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Congruence between two numbers

a ≡ b (mod N) if N is a divisor of b− a

Examples:

• 16 ≡ 1 (mod 3)

• 21 ≡ 5 (mod 8)

Number modulo an integer (slightly informal)

[a]N := remainder of dividing a by N

0 ≤ [a]N < N

(a ≥ 0, otherwise add a multiple of N to a)

Examples:

• [10]2 = 0, [17]5 = 2, [32]5 = 2, [−4]10 = 6, [−47]5 = 3

• [17,213]10 = 3, [43,596]100 = 96

• If 0 ≤ a < N , [a]N = a, for example:

[1]4 = 1, [2]4 = 2, [3]4 = 3

From the definition: [a]N = [b]N if and only if a ≡ b (modN)
Also: [a · b]N = [a]N · [b]N , [a+b]N = [a]N + [b]N
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PART II: RSA MESSAGE ENCODING

From words to numbers

• A = 01

• B = 02

• . . .

• Z = 26

• 00 for space

A message is large number, about 200 digits

Example of message

x = THIS COURSE IS NICE

in code is

x = 20080919000314211819050009190014090305
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Idea of RSA Codes

• Start with: message x (' 200 digits),

• Construct: Encoding Function

E ([integer]N) = [another integer]N

(N is a large number of our choice, about 10200 digits)

• You send: encoded message E([x]N)

• Receiver gets: E([x]N)

• Receiver decodes it using the inverse of E, call it D

D (E ([x]N)) = [x]N
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Properties E and D must satisfy

• E easy to calculate (PUBLIC)

• D hard to calculate (SECRET)

• Easy: small computer time (< 1 second)

• Hard: large computer time (quadrillions of years)
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How does one find

Encoding Function E ?

and

Decoding Function D ?

Using the method invented by

Rivest, Shamir and Adleman:

RSA method
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RSA method to find E and D

• Step 1. Choose large prime numbers p, q (' 100 digits)

Example. p = 11, q = 13,

• Step 2. Let N = p · q
Example. N = p · q = 11 · 13 = 143

• Step 3. Let A = (p− 1) · (q − 1)

Example. A = (p−1) ·(q−1) = (11−1) ·(13−1) = 120

• Step 4. Pick 1 ≤ e < A with gcd(e, A) = 1

Example. e = 53 no common divisors with A = 120

Step 5. Define the Encoding Function

E ([x]143) = [xe]143

Example.

E([x]143) = [x53]143

(From now on, we will write to [x53]143 = [x53])
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Observation:

[xe] = [x · . . . (e times) . . . · x]

• Step 6. Find the solution 1 ≤ d < A to e·d ≡ 1 (mod A)

Euclidean Algorithm backwards for e, A gives d, f :

e · d + A · f = gcd(e, A) = 1,

hence e · d = 1−A · f, and therefore

e · d ≡ 1 (mod A)

Example. Need to solve 53 · d ≡ 1 (mod 120)

120 = 2 · 53 + 14
53 = 3 · 14 + 11
14 = 1 · 11 + 3
11 = 3 · 3 + 2

3 = 1 · 2 + 1
2 = 2 · 1 + 0, hence

1 = 3− 2
= 3− (11− 3 · 3)
= 4 · 3− 11
= 4(14− 11)− 11
= 4 · 14− 5 · 11
= 4 · 14− 5(53− 3 · 14)
= 19 · 14− 5 · 53
= 19(120− 2 · 53)− 5 · 53
= 19 · 120− 43 · 53, hence

13



(−43) · 53 = 1− 19 · 120

(−43) · 53 ≡ 1 (mod 120)

Since [−43]120 = [77]120,

d = 77

• Step 7. Define the Decoding Function

D ([x]) = [xd]

Example.

D([x]) = [x77]

End of RSA Method

Why is D the inverse of E?

D (E([x])) = E (D([x])) = [xe·d]

Using a theorem (by Fermat) one can check:

[xe·d] = [x]
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Computation of encoded message E([97]) = [97]53

Step 1. Decompose e = 53 in sum of powers of 2

53 = 32 + 16 + 4 + 1 = 25 + 24 + 22 + 20

Step 2. Express E([97]) as a product

E([97]) = [97]53 = [97]1+4+16+32

= [97]1 · [97]4 · [97]16 · [97]32

Step 3. Compute [97] to the above powers of 2

[97]2 = [−46]2 = [2116] = [114] = [−29]

[97]4 = [−29]2 = [841] = [126] = [−17]

[97]8 = [−17]2 = [289] = [3]

[97]16 = [3]2 = [9]

[97]32 = [9]2 = [81] = [−62]

Step 4. Final computation

E([97]) = [97]53

= [97]1 · [97]4 · [97]16 · [97]32

= [97] · [−17] · [9] · [−62]
= [−46] · [−17] · [9] · [−62]
= −[46 · 17] · [9 · 62]
= [782] · [558]
= −[67][−14]
= [67 · 14] = [938] = [80]
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Computation of decoded message D([80]) = [80]77

Using same method as earlier

77 = 1 + 4 + 8 + 64

[80]77 = [80] · [80]4 · [80]8 · [80]64

= [80] · [−62] · [−17] · [−62]
= [1360] · [3884]
= −[73] · [−17]
= [73] · [17]
= [1241]
= [97]

The original message!

Exercise 1: In constructing a code with p = 17, q = 19
suppose that the encoding exponent is e = 35. What should
the decoding exponent d be?

Exercise 2:
(A) Decode the message 127 using the code in exercise 1.
(B) Encode the message found in (A), and check the result
is precisely 127.
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How can one break the code?

• If can factor N into p · q → can find d, and function D

• TELL e, N everyone: they can send encoded messages

• KEEP d secret: you only can decode them

• < 1 sec to find E([x]) if e known, or D([x]) if d known

• quadrillions of years to find D([x]) if d NOT known
(based on current known algorithms)
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ADDITIONAL MATERIAL:
Verification that D is inverse of E

Need: Fermat’s little theorem:

if p is prime and [a]p 6= 0, ap−1 ≡ 1 mod p

First, D(E([x])) = D([xe]) = [(xe)d] = [xd·e]

We want to check: [xd·e] = [x], equivalently xd·e−x ≡ 0 (modN)

Hence we need to check that N = p · q is a divisor of xd·e− x

Enough to check that p is divisor of xd·e−x, i.e. [xd·e−x]p = 0

We know:

d · e ≡ 1 mod A, so there exists k such that d · e = 1 + k ·A

Since A = (p−1)·(q−1), k·A = (p−1)·m, where m = k·(q−1)

Therefore:

xd·e − x = x1+k·A − x = x(xk·A) − x = x(x(p−1)·m) − x =
x(xp−1)m − x

[xd·e − x]p = [x(xp−1)m − x]p = [x(1)m − x]p = [x(1)− x]p = 0
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