
What is a tiling?

• A tiling refers to any pattern that covers a flat surface, like a painting on a
canvas, using non-overlapping repetitions. Another word for a tiling is a tes-
sellation. There are several ways to create a tiling, here are some examples.

kind of regular polygon each, regular octagons and squares for (e), regular hexagons

and equilateral triangles for (f).

(a) (b) (c)

(d) (e) (f)

Figure 2

Observe that we are not saying anything about color or other attributes, because

we are only concerned with shape and position. As the tilings (a), (b) and (c) in Figure

2 show, squares, equilateral triangles and regular hexagons do make up regular

tilings, a fact that was known to Pythagoras’s followers in the fifth century B.C.

(see.cite: cajori, page 18). But Mother Mathematics says that no other regular polygon

can claim the same. Why? If we look at the regular tilings in Figure 2, we can see that

the angles meeting at each vertex make up exactly a complete revolution, or 360!.

What happens with, say, regular octagons? As Figure 3 illustrates, two regular

octagons fall short of a complete revolution, while three regular octagons produce

some overlapping. Tiling (e) in Figure 2 shows that the perfect tiling companion of two

regular octagons is a smaller square wedged between them.
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• The first two tilings are caled regular tilings because they are made up of
just one regular polygon – that is a shape having sides of the same length
and equal angles – and they are placed vertex to vertex.
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As mentioned above a regular tiling is made up of repeated copies of one regular
polygon with the vertices of one copy only touching the vertices of another copy.
A regular polygon has sides that are all the same length and equal angles.

• A regular polygon with three sides is an equilateral triangle.

• A regular polygon with four sides is a square.

• The following shapes are not regular. Why?

Question: Can we make a regular tiling with any regular polygon?

• The first two tiling on the picture in the first page show that we can make
a tiling with an equilateral triangle or a square. Try to make a “stop sign
tiling”, that is a regular tiling with a regular octogon.

Don’t turn the page until you have tried!
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Regular tilings

Don’t feel bad if you were not able to succeed, because it is impossible. After plac-
ing two regular Octagons side by side there is not enough room to fit the another
octagon without overlapping. Here is a picture of what is going on.

Figure 3

So, our claim about which regular polygons can tile a plane regularly, is really a

claim about the size of their angles. To say that a regular polygon will produce a

regular tiling of a plane, is the same as saying that the size of its angle divides exactly

into 360!. In other words, that the ratio 360!

angle
is equal to one of the numbers 1,2,3, . . . .

Let us check this claim with our successful tilings in Figure 2. In the case of the

equilateral triangle, we need six of them to complete 360!. Or 360! ! 6 ! angle, or

angle ! 60!. Likewise, four squares or three regular hexagons complete 360!. So, the

angle of a square must be 90! and the angle of a regular hexagon must be 120!. The

following table summarizes our findings so far.

Figure 2 angle 360!

angle

(a) 90! 4

(b) 60! 6

(c) 120! 3

So, our claim about the angle dividing exactly into 360! works in these three cases.

Now, if we want to show that only equilateral triangles, squares and regular hexagons

make up regular tilings, we need to show that the angle of any other regular polygon

will not divide exactly into 360!. How do we do this? One way of doing it could be to

check each regular polygon, starting with a regular pentagon, continuing with a regular

heptagon, regular octagon, on and on. But could this method work? Well, even if we

are patient enough to check the first million regular polygons, we will still have a long

way to go. More precisely, we still have to check infinitely many regular polygons. So

we really haven’t made much progress, have we? Instead of trying this case-by-case

approach, we will see that a mix of geometry and algebra will do the trick very nicely.

We first use geometry to come up with a formula for the size of the angle of any

regular polygon. Let us see how.

Figure 4(a) shows a regular polygon with n sides and angle a. The generic number

• We have seen that an equilateral triangle or a square will make regular tiling,
but a regular octagon will not.
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Regular tilings

Question: What regular polygons will make a regular tiling?

• To answer this question, notice that if we look at a vertex of a regular tiling
the angles must add up to 360◦. Since the polygons are regular, this means
that the angles of our polygon must divide exactly into 360◦.

• For example look at a vertex in the regular tiling formed by a square which
has angles of 90◦.

90◦ 90◦

90◦90◦

We have

360
90

= 4

which is why there are 4 squares touching at the vertex.

• With out looking at the picture on the first page, how may triangles will meet
at a vertex of a regular tiling formed by an equilateral triangle?

Answer = .

• To solve our problem we must figure out which regular polygons have angles
that divide 360◦.



5

Angles of regular polygons

• What is the angle of a regular polygon? The angle should be related to
the number of sides. We want to think of the polygon as having a generic
number of sides n where n can be 3, 4, 5, . . . (Why can’t n = 1 or 2?). We
can find a formula for the angle in terms of the number of sides, here is how.

– Let n = number of sides of our regular polygon.

– Let a = the angle of of our polygon.

– Make an isosceles triangle from the center of the polygon to one of the
edges.

of sides n can be 3,4,5, . . . . We haven’t completed the picture of our polygon because

we do not want to fall into thinking about a particular polygon. Whatever we do, has to

work for any regular polygon. In Figure 4(b) we have highlighted one of the n isosceles

triangles that compose our polygon.

Figure 4(a) Figure 4(b)

What can we say about the angles of this isosceles triangle? Thinking a little bit

about it, we can see that they must be equal to a

2
, a
2

and 360!

n
, as Figure 4(b)

suggests. We also know that the sum of these three angles has to be 180!. Or,

a

2
! a
2

! 360
!

n
" 180!

If we move things around in this equation, we can write it as

a " 180! " 360
!

n
  #   

This is the formula we will use for the angle of our regular polygon. Of course, it

produces the values we have already found for the angle of an equilateral triangle,

n " 3, a square, n " 4 and a regular hexagon, n " 6.

Now, let’s remember that our regular polygon will make a regular tiling only when

the angle a divides exactly into 360!. This means that we are looking for those regular

polygons for which the ratio 360!

a
equals one of the numbers 1,2,3, . . . If we substitute

in this condition our newly acquired formula for a, we see that we are looking for those

values of n for which 180! " 360!

n
divides exactly into 360!. In other words, the condition

becomes

360!

180! " 360!

n

must be equal to 1 or 2 or 3 or . . .

We quickly realize that simplifying a bunch of things, our condition reads

1
1

2
" 1

n

must be equal to 1 or 2 or 3 or . . .

Or,

2n
n " 2

must be equal to 1 or 2 or 3 or . . .

• We know that the sum of the angles of a triangle is 180◦, so

a
2

+
a
2

+
360◦

n
= 180◦.

Solve for a:

a =

• Verify your formula is correct for equilateral triangles and squares which
have angles of 60◦ and 90◦ respectively.
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Angles of regular polygons

• Use your formula obtained on the previous page to fill out the following
chart.

Number of sides, n Angle, a
3 60◦

4 90◦

5
6
7
8

• Now remember that our regular polygon will make a regular tiling only when
the angle, a, divides exactly into 360◦. In other words, using our formula

a = 180◦ −
360◦

n

should satisfy

360◦

180◦ − 360◦
n

= 1, 2, 3, . . .

Simplifying things we get

360◦

180◦ − 360◦
n

=
1

1
2 −

1
n

=
2n

n − 2
= 1, 2, 3 . . .
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Regular tilings

• In other words we have turn our geometric problem into an algebra problem:
Find the numbers n such that 2n/(n − 2) is a whole number. Fill out the
following chart,

Number of sides, n 2n
n−2

3 6
4 4
5
6
7
8

• Which of the regular polygons with number of sides n = 3, 4, 5, 6, 7, or 8
make a regular tiling?

• Are there any more? Substituting n = 8, 9, . . . will not work because we will
go on for ever. However, the answer is no. We can write

2n
n − 2

= 2 +
4

n − 2

and notice that if n is bigger than 8 then

4
n − 2

<
4

8 − 2
=

2
3
< 1.

This means that

2 <
2n

n − 2
= 2 +

4
n − 2

< 3

when n > 8.

• There are no whole numbers between 2 and 3, so no regular polygon with
more than eight sides can form a regular tiling.
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Regular tilings

• Alas, we have solved our problem! There are only three regular poly-
gons that form a regular tiling: equilateral triangles, squares, and regular
hexagons. Here are there pictures.

kind of regular polygon each, regular octagons and squares for (e), regular hexagons

and equilateral triangles for (f).

(a) (b) (c)

(d) (e) (f)

Figure 2

Observe that we are not saying anything about color or other attributes, because

we are only concerned with shape and position. As the tilings (a), (b) and (c) in Figure

2 show, squares, equilateral triangles and regular hexagons do make up regular

tilings, a fact that was known to Pythagoras’s followers in the fifth century B.C.

(see.cite: cajori, page 18). But Mother Mathematics says that no other regular polygon

can claim the same. Why? If we look at the regular tilings in Figure 2, we can see that

the angles meeting at each vertex make up exactly a complete revolution, or 360!.

What happens with, say, regular octagons? As Figure 3 illustrates, two regular

octagons fall short of a complete revolution, while three regular octagons produce

some overlapping. Tiling (e) in Figure 2 shows that the perfect tiling companion of two

regular octagons is a smaller square wedged between them.

• It has been said that mathematicians do not know when to “leave well enough
alone”, meaning that we always find yet another wrinkle to explore. Here is
a new wrinkle. Look at the tiling below:

kind of regular polygon each, regular octagons and squares for (e), regular hexagons

and equilateral triangles for (f).

(a) (b) (c)

(d) (e) (f)

Figure 2

Observe that we are not saying anything about color or other attributes, because

we are only concerned with shape and position. As the tilings (a), (b) and (c) in Figure

2 show, squares, equilateral triangles and regular hexagons do make up regular

tilings, a fact that was known to Pythagoras’s followers in the fifth century B.C.

(see.cite: cajori, page 18). But Mother Mathematics says that no other regular polygon

can claim the same. Why? If we look at the regular tilings in Figure 2, we can see that

the angles meeting at each vertex make up exactly a complete revolution, or 360!.

What happens with, say, regular octagons? As Figure 3 illustrates, two regular

octagons fall short of a complete revolution, while three regular octagons produce

some overlapping. Tiling (e) in Figure 2 shows that the perfect tiling companion of two

regular octagons is a smaller square wedged between them.

This tiling is made by sliding the regular tiling of squares.

• Questions: Can we build a sliding tiling using equilateral triangles? What
about regular Hexagons?
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Sliding regular tilings

• The answers to the questions on the previous page are yes for triangles but
no for hexagons. Here are a couple pictures of what is going on.

• For the equilateral triangle tiling we have parallel lines with in the tiling,
which we can use to slide the triangles
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• However for the regular hexagons, the angles do not cooperate, leaving an-
noying empty spots
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• It turns out, in order to make a sliding tiling with a regular polygon the angle
of the polygon must divide 180◦. So the number of sides must satisfy

180◦

180◦ − 360◦
n

=
n

n − 2
= 1, 2, 3, . . .

and we you can verify that this happens only for n = 3 and 4.
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Mixed regular tilings: more than one shape

• Okay so we have seen that there are only 3 shapes that make a regular tiling,
and only two shapes that make a sliding regular tiling. What happens if
we use more than one shape? For now lets keep the rule that we want the
vertexes to match up and that all shapes keeps the same sidelength. We will
call such a tiling a mixed regular tiling. Here are a few examples of mixed
regular tilings:
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kind of regular polygon each, regular octagons and squares for (e), regular hexagons

and equilateral triangles for (f).

(a) (b) (c)

(d) (e) (f)

Figure 2

Observe that we are not saying anything about color or other attributes, because

we are only concerned with shape and position. As the tilings (a), (b) and (c) in Figure

2 show, squares, equilateral triangles and regular hexagons do make up regular

tilings, a fact that was known to Pythagoras’s followers in the fifth century B.C.

(see.cite: cajori, page 18). But Mother Mathematics says that no other regular polygon

can claim the same. Why? If we look at the regular tilings in Figure 2, we can see that

the angles meeting at each vertex make up exactly a complete revolution, or 360!.

What happens with, say, regular octagons? As Figure 3 illustrates, two regular

octagons fall short of a complete revolution, while three regular octagons produce

some overlapping. Tiling (e) in Figure 2 shows that the perfect tiling companion of two

regular octagons is a smaller square wedged between them.

Ifyouwish,youcanverifyinthiswayeachofthesolutionsdisplayedinthetable.

Wenoticerightawaythatsolutions10,14and17producethethreeregulartilings

weobtainedbefore.Wecouldhaveweededthemoutbyrequestingthatnotall

n1,n2,...,nkareequal.Moreover,solution8appearsinFigure2(e)andsolution16

appearsinFigure2(f).Soweknowthatallthesecombinationsaredoable.Thatisto

say,theynotonlyworkatonevertex,buttheycanberepeatedagainandagainat

everynewvertex,producingamixedtilingofaplane.Thisisnotthecasehowever,

withsolutions1,2,3,4,6and9,asyoucaneasilycheck.Iamjustkidding.Regular

polygonswithsomanysidesarenotthateasytodraw,soyoucantakemywordforit.

Orrather,youandIcantakeMauriceKraitchik’swordforit,fromhisdelightfulbook

MathematicalRecreations(cite: maurice).Likewise,solution11cannotworkbyitself,

butitcanbeusedincombinationwithothersolutions,forinstance5,15and17.You

cantryyourhandatdrawingsomeofthetilingsresultingfromthesecombinations,or

youcanseeafewsamplesinKraitchick’sbook.

Eachoneoftheothersolutions,5,7,12,13,15and16,producesamixedtilingof

theplane.Thecatchisthattheregularpolygonscanberearrangedinmorethanone

way!Forinstance,Figure9showstwomixedtilingsthatusesolution12andFigure10

showstwomixedtilingsthatusesolution15.

Figure9(a)Figure9(b)
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Solution 15 Solution 16

Figure 11

By now, you can see that we could go on forever with this very serious tiling game.

What if we allow the polygons to get smaller and smaller? What if we use copies of

any triangle or copies of any figure with four sides? What if we want to emulate Escher

and try to draw some figurative meaning into the tiles? What if we look for patterns

that, in some sense, never repeat? Each of these "what if", and pretty much any other

you may imagine, will open up new fascinating possibilities. As a guide for your

explorations, I suggest the excellent presentation in Chapter 20 of For All Practical

Purposes (cite: comap). There you can read, for instance, about the endeavors of one
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• The first four use two different regular polygons and the last two use three
different regular polygons.

• This begs (at least) a couple questions.

Questions: What shapes make up a mixed regular tiling? Is there are maxi-
mum number of different regular polygons we can use?
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Mixed regular tilings
• It turns out the key to solving these problems is to figure out how many

regular polygons can meet at each vertex. For each of the mixed tilings on
previous page find how many polygons meet at each vertex. For instance,
in the first picture each vertex meets four triangles and one hexagon, so 5
polygons meet. Fill in the rest of the table below.

Mixed tiling Number of polygons at each vertex
1 5
2
3
4
5
6

• In order to figure this out we use the same principle: at each vertex the sum
of the angles meeting has to add up to 360◦. Suppose that we have k regular
polygons with number of sides n1, . . . , nk meeting at a vertex. Our basic
principle means that

180◦ −
360◦

n1
+ 180◦ −

360◦

n2
+ · · · + 180◦ −

360◦

nk
= 360◦

or doing a little rearranging

1
n1

+
1
n2

+ · · · +
1
nk

=
k − 2

2
.

Now all we need to do is solve this to figure out how many shapes meet at
each vertex. This is no easy task! There are too many unknowns.

• We can, however, get bounds on k. For instance we cannot have k = 1 or
2 (Why?). So k ≥ 3 for a lower bound. To get an upper bound notice we
must have n1, n2, . . . , nk all bigger than 3 because each regular polygon has
at least three sides. This makes

k − 2
2

=
1
n1

+
1
n2

+ · · · +
1
nk
≤

1
3

+
1
3

+ · · · +
1
3

=
k
3
.

• Cross multiply to get an upper bound on k, the number of regular polygons
that meet at a vertex.

3 ≤ k ≤ .
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Mixed regular tilings

• We have made things more manageable for our selves by showing that in
order to have a mixed regular tiling, we need at least three and at most six
regular polygons to meet at each vertex. However we still have to find all
solutions to the equations

1
n1

+
1
n2

+
1
n3

=
1
2

k = 3

1
n1

+
1
n2

+
1
n3

+
1
n4

= 1 k = 4

1
n1

+
1
n2

+
1
n3

+
1
n4

+
1
n5

=
3
2

k = 5

1
n1

+
1
n2

+
1
n3

+
1
n4

+
1
n5

+
1
n6

= 2 k = 6

This would take a long time! Fortunately, we have computers.

• It turns out there are 17 solutions to the above equations. Here they are listed
in a chart. The first equation has 10 solutions, the second has 4 solutions, the
third equation has 2 solutions, and the last equation has only one solution.

1
n1

! 1
n2

" 0,

which is again impossible. So a mixed tiling has to use no fewer than three regular

polygons at each vertex. Could it use any number of regular polygons, say, three,

twenty, thirty, two million? Fortunately the answer is no. More precisely, six regular

polygons is the maximum number we may be able to use. Let’s see why: Regardless

of what the combination of regular polygons might be, we know that each regular

polygon will have at least three sides. This means that the numbers n1,n2,. . . ,nk should

all be ! 3. Using this information in (ref: mixed), we can write

k " 2
2

" 1
n1

! 1
n2

!. . .! 1
nk

# 1
3

! 1
3

!. . .! 1
3

" k

3
.

So, the number k of regular polygons used at each vertex has to satisfy the condition

k " 2
2

# k

3
.

Solving for k in this inequality we readily conclude that k # 6. So, it’s true, we cannot

have seven or more regular polygons meeting at each vertex. Having settled this

point, the next step is to see which combinations of regular polygons are allowed. To

do this, we need to find, for each value of k " 3,4,5,6, all the k-tuples !n1,n2, . . . ,nk" of

counting numbers that satisfy (ref: mixed). The answer can be obtained using pretty

much any computer algebra system or, of course, checking by hand. I highly

recommend the first alternative, but either way, here are all the solutions, numbered 1

to 17.

n1 n2 n3 n1 n2 n3 n4 n5 n6

1 3 7 42 10 6 6 6

2 3 8 24 11 3 3 4 12

3 3 9 18 12 3 3 6 6

4 3 10 15 13 3 4 4 6

5 3 12 12 14 4 4 4 4

6 4 5 20 15 3 3 3 4 4

7 4 6 12 16 3 3 3 3 6

8 4 8 8 17 3 3 3 3 3 3

9 5 5 10

For example, this table tells me that solution 1 uses one equilateral triangle, one

regular heptagon and one regular polygon with 42 sides. This makes sense because if

we substitute in (ref: mixed) k " 3, n1 " 3, n2 " 7 and n3 " 42, we get the correct

identity

1
3

! 1
7

! 1
42

" 3 " 2
2

.
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Chart of possibilities

1
n1

! 1
n2

" 0,

which is again impossible. So a mixed tiling has to use no fewer than three regular

polygons at each vertex. Could it use any number of regular polygons, say, three,

twenty, thirty, two million? Fortunately the answer is no. More precisely, six regular

polygons is the maximum number we may be able to use. Let’s see why: Regardless

of what the combination of regular polygons might be, we know that each regular

polygon will have at least three sides. This means that the numbers n1,n2,. . . ,nk should

all be ! 3. Using this information in (ref: mixed), we can write

k " 2
2

" 1
n1

! 1
n2

!. . .! 1
nk

# 1
3

! 1
3

!. . .! 1
3

" k

3
.

So, the number k of regular polygons used at each vertex has to satisfy the condition

k " 2
2

# k

3
.

Solving for k in this inequality we readily conclude that k # 6. So, it’s true, we cannot

have seven or more regular polygons meeting at each vertex. Having settled this

point, the next step is to see which combinations of regular polygons are allowed. To

do this, we need to find, for each value of k " 3,4,5,6, all the k-tuples !n1,n2, . . . ,nk" of

counting numbers that satisfy (ref: mixed). The answer can be obtained using pretty

much any computer algebra system or, of course, checking by hand. I highly

recommend the first alternative, but either way, here are all the solutions, numbered 1

to 17.

n1 n2 n3 n1 n2 n3 n4 n5 n6

1 3 7 42 10 6 6 6

2 3 8 24 11 3 3 4 12

3 3 9 18 12 3 3 6 6

4 3 10 15 13 3 4 4 6

5 3 12 12 14 4 4 4 4

6 4 5 20 15 3 3 3 4 4

7 4 6 12 16 3 3 3 3 6

8 4 8 8 17 3 3 3 3 3 3

9 5 5 10

For example, this table tells me that solution 1 uses one equilateral triangle, one

regular heptagon and one regular polygon with 42 sides. This makes sense because if

we substitute in (ref: mixed) k " 3, n1 " 3, n2 " 7 and n3 " 42, we get the correct

identity

1
3

! 1
7

! 1
42

" 3 " 2
2

.

• How do you read this chart? For instance, solution 1 says that k = 3, n1 = 3,
n2 = 7, and n3 = 42, which verifies the identity

1
3

+
1
7

+
1

42
=

3 − 2
2
.

• Furthermore, solution 1 says that if we want to try to build a mixed regular
tiling, at each vertex we should use one equilateral triangle (n1 = 3), one
heptagon (n2 = 7), and one regular polygon with 42 sides (n3 = 42). So-
lution 8 says that we should have one square pentagons (n1 = 4) and two
octagons (n2 = n3 = 8) meeting at each vertex.

• Which solutions in the chart correspond to regular tilings, that is only using
one regular polygon? (Hint: there are three of them).

• What is the maximum number of different shapes one can use for a regular
mixed tiling?



14

Mixed regular tilings
• It turns out that not every solution above will produce a mixed regular tiling.

The problem is that these combinations work at one vertex, but they cannot
be repeated again and again at each vertex, forming a tiling.

• For instance, solution 9 uses two regular pentagons and one regular decagon.
Below, you can see what happens if you try use this configuration. Try to
complete the picture, remember at each vertex we must have two regular
pentagons and one regular decagon. What happens at the marked vertices?

??

??

• Likewise the solutions 1, 2, 3, 4, 6 and 11 do not produce tilings either (Try
to draw these!). The solutions 10, 14, and 17 correspond to regular tilings,
so we disregard them. This leaves seven other true regular mixed tilings: 5,
7, 8, 12, 13, 15, and 16.

• The catch is that the polygons may be arranged in more than one way. For
example solution 15 has the following possible arrangements.

Figure 10(a) Figure 10(b)

Observe that in searching for mixed tilings, it is not enough that the shapes work

well one vertex at the time, but rather, they have to click at all the vertices

simultaneously. Recall that we did not encounter this situation when searching for

regular tilings.

If we now want to eliminate all but a few special mixed tilings, we can make the

following additional requirement: At each vertex, the regular polygons should always

appear in the same order. For instance, this is the case in Figure 10(a), because if we

go around any vertex, say, counterclockwise, the regular polygons always appear as a

chunk of length five of the sequence ...STSTTSTSTTS..., where S and T mean square

and triangle, respectively. It is the case also in Figure 10(b), if we now use the

sequence ...TTTSSTTTSSTTT.... The same can be said about Figure 9(b), if we

consider chunks of length four of the sequence ...HTHTHTHT.... where H stands for

hexagon. However, in Figure 9(a), we can see that at some vertices the arrangement

is ...THTHTHTHT..., while at others the arrangement is ...TTHHTTHHTT....

Here is the final scoop: There are eight mixed tilings that keep the same

arrangement at every vertex and are not regular tilings. They are called semi-regular

tilings, and they correspond to solutions 5, 7, 8, 12, 13, 15 (two of them) and 16. We

have them all together in Figure 11.
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