
THE P-ADIC NUMBER CIRCLE

I. EQUATIONS

You are probably already familiar with these number systems, each of which is
included in the next:

• N = the NATURAL NUMBERS 0, 1, 2, 3, 4, . . .
• Z = the INTEGERS . . . ,−3,−2,−1, 0, 1, 2, 3, . . .
• Q = the RATIONAL NUMBERS a

b (with a&b integers, and b 6= 0)
• R = the REAL NUMBERS, i.e. the entire continuum of numbers with deci-

mal expansions like

3.141592653589793238462643383279 . . .

which make up the number line:

One thing you can do with numbers is to solve equations. People have long
been intrigued by equations with integer coefficients whose solutions are sought
for in integers (or rational numbers). These are called DIOPHANTINE EQUA-
TIONS, and I’ll bet you all know at least one:

x2 + y2 = z2.

Even in natural numbers it has infinitely many solutions, the simplest few being

(x, y, z) = (0, 0, 0), (3, 4, 5), (5, 12, 13)

Problem 1. Can you find the next? (Rather than plugging and chugging, try to
find a pattern in the differences of squares 12, 22, 32, 42, . . . and use that to avoid
computation altogether!)

Another famous example is PELL’S EQUATION

x2 − 5y2 = ±4.

Problem 2. Find all the solutions to Pell’s equation with x and y natural num-
bers! Start by remembering the Fibonacci sequence. Plug those numbers in for
y, and try to find a pattern for the numbers that work for x.

1



Next for some infamous Diophantine equations: first, there is FERMAT’S EQUA-
TION

xn + yn = zn (n ≥ 3)

which was proved insoluble in rational numbers (except for (x, y, z) = (0, 0, 0))
in 1995 by ANDREW WILES. Then, there is the equation

x2 = 2,

which the Pythagoreans (ca. 500 BC) already knew can’t be solved by a rational
number.1

Indeed, if we had integers a and b with(a
b

)2

= 2 ,

then we can assume there is no prime number dividing them both. (Otherwise,
just divide it out – this doesn’t affect the fraction a

b .) Multiplying both sides by b2
gives

a2 = 2 · b2,
so that a2 is even. Since the square of an odd number is odd, a itself must be
even. Therefore a = 2 · c for some integer c, and our equation becomes

4 · c2 = 2 · b2.

Dividing through by 2,
2 · c2 = b2

tells us as before that b must be even. But then a and b are both divisible by
the prime number 2, in contradiction to our assumption. So the boxed equation
cannot hold.

The real numbers give one enlargement of the rational numbers in which one
can solve x2 = 2. Since this solution

x =
√
2 = 1.414213562373095 . . .

is not in Q, we say that it is IRRATIONAL. In fact R is not the only enlargement of
Q containing a square root of 2. For each prime number p, there is a continuum
of numbers with “p-adic expansions” and (roughly speaking) making up a num-
ber circle. For some (but not all) choices of p, these “p-adic numbers” contain
a solution to x2 = 2. They have been around for a while, since their invention
by KURT HENSEL in the mid-1890’s, but haven’t been popularized. Though we
won’t get into this today, they are very useful to mathematicians – for instance,
in deciding when certain equations can be solved over Q.

1Apparently, this upset them so much that they decided it must be hidden from the public, along with the
dodecahedron.



II. MODULAR ARITHMETIC

For each natural number n ≥ 2, there is a very small number system:

Z/nZ = {0, 1, 2, . . . , n− 1},

called the “integers mod n”. To add, multiply, or subtract two “integers mod n”,
just do it as you would normally . . . then add or subtract n enough times until
your answer is in Z/nZ.

For example,in Z/7Z,

4 · 4 = 16
(7)
≡ 2.

The “
(7)
≡” means “equals mod 7”; it’s there so that you don’t have to write “16 = 2”,

which would just feel too strange.

Problem 3. Try multiplying 3 · 4 in Z/5Z, in Z/6Z, in Z/7Z, and in Z/8Z. What
do you notice?

In order to be able to divide in a number system, we can’t have products of
nonzero numbers giving zero. If a · b = 0, with b 6= 0, division by a cannot even
be possible: you would face the contradiction

b =
a · b
a

=
0

a
= 0.

As you can see, when n isn’t prime, this is a problem; so we usually let n be a
prime p.

For instance, let p = 7. In Z/7Z, 3 · 5 = 15
(7)
≡ 1 and so we say that 5 is “13”.

Problem 4. What is 1
3 in Z/11Z? in Z/5Z?

We denote by (Z/pZ)∗ the p− 1 nonzero elements {1, 2, . . . , p− 1}.

Problem 5. What elements of (Z/3Z)∗, (Z/5Z)∗, (Z/7Z)∗ are squares? On the
basis of your results, what proportion of elements of (Z/pZ)∗are squares in
general?



III. OINK?
Well, you know that the real numbers are those with a decimal expansion

c
2
c
1
c
0
.c−1

c−2
c−3
c−4

. . .

where the c
i
are integers between 0 and 9 called DIGITS. The expansion can go

on forever to the right, but always terminates to the left. If you prefer, you can
write this number as

c
2
· 102 + c

1
· 10 + c

0
+
c−1

10
+
c−2

102
+
c−3

103
+
c−4

104
+ · · · .

We could also do numbers in a different “base” than 10 – for instance, base p for
p a prime. (Maybe you’ve even done this before, in school or in another math
circle.)

But that’s not what we’re going to do. What we are going to do is rather bizarre.
We’re going to consider “numbers” which terminate to the right, like

. . . a
3
a

2
a

1
a

0
.a−1

a−2

=
a−2

p2
+
a−1

p
+ a

0
+ a−1

· p+ a−2
· p2 + a−3

· p3 + · · · ,

where the a
i

are integers between 0 and p − 1 called (...ahem) PIGITS. These
numbers are the p-ADIC RATIONALS and the collection of all of them is denoted
Qp. Multiplication and addition take place in essentially the same way, by “car-
rying to the left” (which can now go on forever ). That’s the general idea. But
now let’s be a little more careful and work with a more manageable set of p-adic
numbers.



IV. THE P-ADIC INTEGERS

Let p be a prime number, like 2, 3, 5, 7, etc. We define Zp to consist of the formal
infinite sums

a
0
+ a

1
· p+ a

2
· p2 + a

3
· p3 + · · ·

with each pigit a
i

between 0 and p − 1 (inclusive). “Formal” here means “don’t
add it up”. The sums can be infinite or finite.

Inside Zp are all the natural numbers N. In fact, they are exactly the p-adic
integers given by finite sums. For instance, 37 is a natural number; we would
like to express it in Z5. Writing “p” for 5 to resist the urge to “add it all up”, we
just need to find a

0
, a

1
, a

2
, etc. so that

(I) 37 = a
0
+ a

1
· p+ a

2
· p2 + · · · .

Considering both sides “mod p (= 5)”,2 we find

2 = a
0
.

Subtracting this from equation (I) gives

(II) 35 = a
1
· p+ a

2
· p2 + · · · .

Taking this “mod p2(= 25)” yields

10 = a
1
· p.

So a
1
= 2, and subtracting this from equation (II) we’ve got

25 = a
2
· p2.

Hence a
2
= 1, and we have shown that

2 + 2 · p+ p2

expresses 37 as an element of Z5.

2In Z/pZ, p
(p)
≡ 0; so this has the effect of chopping everything after a

0
off on the right-hand side of boxed

equation (I).



Problem 6. Express 37 in Z3. Then plot it on the “3-adic number circle” below.
(You’re welcome to do this with other natural numbers – be my guest!)3

3But what ever you do, don’t try to add p-adic numbers on the circle! It’s a cute way of arranging them, but
adding distances (from zero) doesn’t work. Maybe you can demonstrate this!



V. ADDING AND MULTIPLYING

You have two p-adic integers

α = a
0
+ a

1
· p+ a

2
· p2 + · · ·

β = b
0
+ b

1
· p+ b

2
· p2 + · · ·

and would like to add them. (Well, you personally may not like to add them, but
I want you to.) The problem if you just write

(a
0
+ b

0
) + (a

1
+ b

1
) · p+ (a

2
+ b

2
) · p2 + · · ·

is that the pigits (a
i
+ b

i
) won’t always be less than p. So you have to “carry”, a

process with which you are well acquainted from adding natural numbers.

For instance, sticking for the moment with finite expansions, if p = 5 and

α = 2 + 2 · p+ p2

β = 4 + 3 · p

then

α + β = (2 + 4) + 2 · p+ 3 · p+ p2

= 1 + (1 + 2 + 3) · p+ p2

= 1 + p+ (1 + 1) · p2

= 1 + p+ 2 · p2.

As you can check, we have just added 37 + 19 = 56, but in 5-adic notation.

Problem 7. Try α · β in Z5, with the same numbers α and β.

Now for an example with infinite expansions. You may be surprised by the
answer.

Problem 8. Let p = 3. Try adding (in Z3) α = 1 to

β = 2 + 2 · p+ 2 · p2 + 2 · p3 + 2 · p4 + · · ·

.



VI. SUBTRACTING AND DIVIDING

The last problem raises the question: how do you find “−α”? Since we already
know how to write all natural numbers as p-adic integers, this will tell us how to
express all integers p-adically, demonstrating that “Z is included in Zp”.

With p = 3, consider

α = 1 + p2 + p3;

we want

β = b
0
+ b

1
· p+ b

2
· p2 + b

3
· p3 + · · ·

(with each pigit b
i
= 0, 1, or 2) such that

(*) α + β = 0

in Z3. The idea for solving this is to “solve it modulo all powers of p”. To do this,
we should actually substitute in 3 for p:

(*) mod 3: 1 + b
0

(3)
≡ 0 =⇒ b

0
= 2

(*) mod 9: 3 + b
1
· 3

(9)
≡ 0 =⇒ 1 + b

1

(3)
≡ 0 =⇒ b

1
= 2

(*) mod 27: 9 + 9 + 9 · b
2

(27)
≡ 0 =⇒ 2 + b

2

(3)
≡ 0 =⇒ b

2
= 1

(*) mod 81: 27 + 27 + 27 · b
3

(81)
≡ 0 =⇒ b

3
= 1

and then b
4
= b

5
= b

6
= · · · = 2. (There are some steps to fill in.) So

−α = 2 + 2 · p+ p2 + p3 + 2 · p4 + 2 · p5 + 2 · p6 + · · · .

So I’ve done subtraction; your job is to divide!

Problem 9. (p = 5) Recall α = 2 + 2 · p+ p2 expresses “37” in Z5. Express 1
37 in

Z5 by writing β = b
0
+ b

1
· p+ b

2
· p2 + · · · , demanding that

α · β = 1,

and using the same method as above. (Just try to find b
0

and b
1
, maybe b

2
.)

It turns out that this worked because 37 isn’t divisible by 5. To express all rational
numbers p-adically, you need to allow 1

p. So you’d be back where we started, at
the p-adic rationals mentioned above.



VII. SQUARE ROOTS
Now you’re ready to demonstrate conclusively that Zp and Qp contain “more”
numbers than Z or Q.

Problem 10. Let p = 7, and α = a
0
+ a

1
· p + a

2
· p2 + · · · . Start to solve α2 = 2

in Z7, by again going mod 7, mod 72, mod 73 to find a
0
, a

1
, a

2
.

The next problem is more abstract, but more satisfying if you can master it.

Problem 11. To really see that a solution exists, suppose we know α
n−1

= a
0
+

a
1
·p+ · · ·+a

n−1
pn−1 solving α

n−1

(pn)
≡ 2. Can you find a

n
so that α

n
= α

n−1
+a

n
·pn

solves (α
n
)2

(pn+1)
≡ 2? [Hint: (α

n−1
)2

(pn+1)
≡ 2 + k · pn for some k between 0 and 6.]

If you’ve made it this far, you can now say “
√
2 [an irrational number!] belongs

to Z7”. But not to Z5:

Problem 12. (a) (p = 5) Show that α2 = 2 has no solution in Z5. [Hint: it’s
enough to go mod 5.]
(b) On the other hand, can you solve α2 + 1 = 0 in Z5?

A number theorist once told me he thought tomorrow’s kids would be raised on
p-adics and find them every bit as natural as real numbers. What do you think?


