3 Homework

Consider the recursion
A1. $f(1)=2$
A2. $f(2)=2$
B. $f(n+2)=f(n+1) f(n)$

X1. Compute the values $f(1), \ldots, f(6)$ for this recursion
X2. Prove that for every n in \mathbf{N}, the value $f(n)$ is a power of 2 , namely a number of the form 2^{p} for some counting number p.

X3. Accepting that X2 is true allows us to write $f(n)=2^{p(n)}$, where $p(n)$ is the counting number power of 2 giving $f(n)$. Write a table of values for $p(1), \ldots, p(6)$.

X4. Write the recursion for $p(n)$ from X3. Recognize it?
$\mathbf{X 5}$. Solve the recursion for $p(n)$ in X4, and thus solve the recursion for $f(n)$.

Fix numbers a, b, c and define $f(n)=a n^{2}+b n+c$ for all n in \mathbf{N}.
Y1. Put $a=2, b=0$, and $c=1$. Compute the values $f(1), f(2), f(3), f(4)$.
Y2. Compute the successive differences $f(2)-f(1), f(3)-f(2)$, and $f(4)-f(3)$ from the function values in Y1.

Y3. Find a formula for $f(n+1)-f(n)$ using the general a, b, c formula for $f(n)$. Simplify it as much as possible.

Y4. Use the formula from Y3 to write a recursion for $f(n)$.
Y5. Find values for a, b, c such that the recursion for $f(n)$ has the form
A. $\quad f(1)=1$.
B. $f(n+1)=f(n)+2 n+1$

Hint: some of the numbers a, b, c could be zero.

