
PRIME NUMBERS & SECRET MESSAGES

I. “RSA CODEBREAKER” GAME
This is a game with two players or teams. The players take turns selecting either
prime or composite numbers as outlined on the board below. The key is that
the product of the numbers chosen have to be equal. Here is a sample game:
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Team A Team B
Move 1 × Move 3 = Move 2 × Move 4

8 × = ×

Composite Prime Prime Composite
Number Number Number Number
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Team A Team B
Move 1 × Move 3 = Move 2 × Move 4

8 × = 2 ×

Composite Prime Prime Composite
Number Number Number Number
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Team A Team B
Move 1 × Move 3 = Move 2 × Move 4

8 × 7 = 2 ×

Composite Prime Prime Composite
Number Number Number Number

Team B can now win the game if he can find a composite number to make the
equation true. If Team B can not make the equation equal, then Team A wins.
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Team A Team B
Move 1 × Move 3 = Move 2 × Move 4

8 × 7 = 2 × 28

Composite Prime Prime Composite
Number Number Number Number

Keep the initial composite number 12 or less for the initial games. Then, move
this to 50 or higher if you like.

Problem 1. (For when you’ve played enough games.) Which team is most likely
to win? Is there a winning strategy? For which team?
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RSA GAMEBOARDS
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II. CLOCK ARITHMETIC

On your (12-hour) clock, the 13th hour is 1 o’clock, the 14th is 2, 15 is 3, and so
on. We’ll call 12 “0”.

Problem 2. (a) Add 9 + 10 on the clock. Subtract 3− 7.

(b) Multiply 5 · 7 on the clock. Then try 4 · 9.

(c) What are 52 and 72 on the clock? How about 53? 54? 55?

(d) Is there anything you can multpliy by 5 (on the clock) to get 0?

We don’t have to do this with a 12-hour clock. Let N be any integer bigger
than 1, and imagine a clock with N evenly spaced “hours”: 0, 1, 2, . . ., N − 1.
Arithmetic on this clock is called “arithmetic mod N ”.

To do it without the clock, notice that every integer m can be “reduced” to one
of 0, 1, 2, . . ., N − 1 by adding or subtracting N enough times. Call the result m.

For example, if N = 7, 25 = 4.

Another way of writing this is “25 ≡ 4 (mod 7)” or “25 ≡
(7)

4”. The “≡
(7)

” means

“equals mod 7”; it’s there so you don’t have to write “25 = 4” – which, after all,
isn’t true.

To add, multiply, or subtract two “integers mod N ”, just do it as you would nor-
mally to get some number m, and then find m. For example, with N = 7,
4 · 4 = 16 ≡

(7)
2.



III. POWERS MOD N

Try some modular arithmetic:

Problem 3. (a) Find all the powers of 3 (mod 7).

(b) Now that you’ve found them all, what is 37 (mod 7)?

(c) How about 35 (mod 5)? 25 (mod 5)? 45 (mod 5)?

(d) What do you think 1017 (mod 17) should be?

Just as you are getting a good feeling about this . . .

Problem 4. What about 26 (mod 6)? 310 (mod 10)? [Hint: think of 9 as −1 mod
10.]

So perhaps there is just something about N being a prime number?

Problem 5. Try to guess a general statement that is true! Write it in the box:

What if N = 2 · p, with p a prime number (other than 2). Then it turns out that for
any number m between 0 and N ,

mp ≡ m (mod N ).

Try it: let’s “fix” Problem 4.

Problem 6. What is 23 (mod 6)? 35 (mod 10)?



IV. SECRETS IN BROAD DAYLIGHT
The first public key cryptosystem was invented by Ron Rivest, Adi Shamir, and
Leonard Adleman in 1978. Prior to its introduction, encryption research in the
US was the exclusive business of the National Security Agency, and all infor-
mation was classified. Here is the idea:

• Alice broadcasts an encryption (i.e. encoding) algorithm;
• Bob uses it to encode his message and broadcasts this;
• Alice “reverses” the algorithm to decode the message.

If all the information is publically broadcast, then how can this be secure? The
answer is that the encryption algorithm needs to be very difficult (for anyone but
Alice) to reverse.
The RSA cryptosystem gives a way for Alice to make such an algorithm. Here
is the recipe:

• Take two large prime numbers P , Q (as much as 300 digits each!);
• Let N = P ·Q, and n = (P − 1) · (Q− 1);
• Pick some number1 a between 0 and n;
• Find b (between 0 and n) so that a · b ≡ 1 mod n.

Let’s say your message is a number M (for “Message”!) between 0 and N .

Encoding Algorithm: M  Ma = E (for “Encoded message”).

Decryption Algorithm: E  Eb = D (for “Decoded message”).

RSA Theorem: D = M (i.e. Mab = M ).
Here, of course, the bar means to “go mod N ”.
To encode a message, all Bob needs is N and a, and these are what Alice
broadcasts, keeping P , Q, n, and b secret.
Bob then sends E to Alice, and Alice decodes it.
If Clive wants to break the code (without cheating), he’ll have to find b, which is
too hard without also knowing n. To find n, you need P and Q, which means
he’ll have to factor N – again, probably too hard if Alice used large enough
numbers.
Two questions are: (1) How does Alice find b solving a · b ≡ 1 mod n? (This is
not hard: perhaps something for the next math circle.)
(2) How does Alice find large prime numbers P and Q? (Much harder, for many
years a central problem in algorithmic number theory.)

Problem 7. How does any of this relate to the game we played earlier?

1It should be “relatively prime” to n – something for the next Math Circle.



V. RSA WITH p = 13, q = 2

Let’s give it a try!

Each of you think of a number from 0 to 25.

Write it here: M = .

I make public N = 26 and some number a between 0 and n = (13−1) · (2−1) =
12, say a = 5.

You compute E = M 5 = .

Problem 8. Once you tell me E, what do I have to do to figure out your M?
What is b?

If a · b ≡
(12)

1, then a · b = 12 · c+ 1 for some number c.

Problem 9. Bearing in mind that M 13 ≡
(N)

M since N = 2p, why is the RSA

theorem true in this case – i.e. why is Mab ≡
(N)

M?



VI. ALPHABET DECRYPTION (HOMEWORK)
Let’s reverse roles, but keep the same a and b.
I have encoded a secret message below, by converting each letter to a number
with the table

A B C D E F G H I J K L M
0 1 2 3 4 5 6 7 8 9 10 11 12

N O P Q R S T U V W X Y Z
13 14 15 16 17 18 19 20 21 22 23 24 25

and then raising the number to the 5th power (mod 26). Here is the encoded
message:

8/6/0/13/1/10/6/23/0/6/4/10/9, 8/6/0/13/1/10/12/0/9/10,

8/6/0/13/1/10/15/14/7/9, 8/6/0/13/1/10/19/7/0/20/10/9;

16/11/0/15/0/12/8?

You’ll probably want a calculator to decode it. Write the decoded message here:

Indeed, it’s a riddle. What is the answer?
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