The Fibonacci Sequence

Fibonacci (a.k.a. Leonardo of Pisa) asked the following problem in 1228.
A man put one pair of rabbits in a certain place entirely surrounded by a wall. How many pairs of rabbits can be produced in a year, if the nature of these rabbits is such that every month each pair bears a new pair, a male and a female, which from their second month on, becomes productive?

There are some implicit assumptions:
i) Rabbits never die or become infertile
ii) The first pair is newly born

Question 1. What is the answer to Fibonacci's problem?

The Fibonacci sequence is defined this way.

$$
\begin{aligned}
& F_{1}=1 \\
& F_{2}=1 \\
& F_{n}=F_{n-1}+F_{n-2}, \quad \text { for } n=3,4,5, \ldots
\end{aligned}
$$

Question 2. Calculate the first 12 Fibonacci numbers.

How many different ways can you climb a flight of 3 stairs, if you can go up either one stair or 2 stairs with each step?

Answer:

$$
3=1+1+1=2+1=1+2
$$

so there are three ways.
Question 3: What if there were 5 stairs?

Question 4: What if there were 6 stairs?

Question 5: What if there were 11 stairs?

Question 6: What if there were n stairs? Why?

Choose any two positive whole numbers, J_{1} and J_{2} say (keep them small to make the arithmetic manageable).

Make your own Fibonacci sequence by inductively defining

$$
J_{n}=J_{n-1}+J_{n-2}, \quad \text { for } n=3,4,5, \ldots
$$

Question 7: What are the first 10 elements in your sequence?

Question 8. Add up the first 10 elements. Divide by 11. What do you notice?

Question 9: Do you think what you found depends on what two numbers you started with? Why?

Question 10. For $n=2,3,4, \ldots$, calculate the ratio $\frac{F_{n}}{F_{n-1}}$. What do you notice?

Let us define a new sequence by the formula

$$
L_{n}=\frac{(1+\sqrt{5})^{n}-(1-\sqrt{5})^{n}}{2^{n} \sqrt{5}}
$$

Question 11: What is L_{1} ?

Question 12: What is L_{2} ?

Question 13: What are L_{3}, L_{4} and L_{5} ?

Question 14: What would you guess L_{12} is?

Question 15. It can be proved that $L_{n}=F_{n}$ for every n. What do you think the strategy would be to prove this?
$1+\sqrt{5}=3.236 \ldots$ and $1-\sqrt{5}=-1.236 \ldots$
So when n is large, $(1+\sqrt{5})^{n}$ is much bigger than $\left|(1-\sqrt{5})^{n}\right|$.
So a good approximation for L_{n} is

$$
A_{n}=\frac{(1+\sqrt{5})^{n}}{2^{n} \sqrt{5}}
$$

Question 16: What is $\frac{A_{n}}{A_{n-1}}$? How does this relate to Question 10?

Homework (voluntary)

Fibonacci numbers crop up frequently in nature. In particular, for many flowers the number of petals is a Fibonacci number. See e.g.
http://www.maths.surrey.ac.uk/hosted-sites/R.Knott/Fibonacci/fibnat.html\#plants
for pictures of flowers and seed-heads, and a description of their relation to Fibonacci numbers.

Exercise: Draw your own flower this way.

1. Put a dot in the center of a page. This is the center of the flower.
2. Choose some angle x.
3. Put a dot for your first petal a distance 1 away from the center.
4. Rotate by x, and put your second dot a distance $\sqrt{2}$ away.
5. Rotate by x, and put the third dot a distance $\sqrt{3}$ away.
6. Continue like this - the $n^{\text {th }}$ dot will be rotated x from the previous one, and be a distance \sqrt{n} from the center.

If x is $1 / 8$ of a revolution - 45° - then the pattern is crowded at the center, and spread out far away.

If x is chosen as a Fibonacci ratio of revolutions - e.g. $\frac{21}{13}$ revolutions which is 582° which is the same as 222° - the pattern looks much more like a real daisy.

