Summing Series

John E. McCarthy

September 212014
I. How would you find

$$
1+2+3+\cdots+99+100 ?
$$

II. How about

$$
5+7+9+\cdots+83+85 ?
$$

III. A general Arithmetic Progression with n terms is a sum of the form

$$
\begin{equation*}
a+(a+d)+(a+2 d)+\cdots+(a+(n-1) d) \tag{1}
\end{equation*}
$$

The first term is a, and d is called the common difference. Can you find a formula for (1)? Does it agree with what you got in I and II?
IV. What number corresponds to the binary number $11111111 ?$
V. What number corresponds to the ternary (base 3) number 11111111 ?
VI. A general Geometric Progression with n terms is a sum of the form

$$
\begin{equation*}
a+a r+a r^{2}+\cdots+a r^{n-1} \tag{2}
\end{equation*}
$$

Here, a is the first term, and r is called the common ratio. Can you find a formula for (2)? (Hint: what happens if you multiply (2) by r ?)

Does the formula agree with what you got in IV and V?

Suppose we want to find

$$
1^{2}+2^{2}+\cdots+100^{2}
$$

This is a bit trickier. We would like a formula for

$$
\begin{equation*}
1^{2}+2^{2}+\cdots+n^{2} \tag{3}
\end{equation*}
$$

How do we find it? We are going to start by revisiting III to come up with an algebraic way of finding

$$
\begin{equation*}
1+2+\cdots+n \tag{4}
\end{equation*}
$$

and then see if we can generalize this to sums of squares. Draw a picture of (4):

We may guess that the order of magnitude is about n^{2} (it is close to a triangle with base and height n, but the diagonal is jagged). Let us guess that

$$
\begin{equation*}
1+2+\cdots+n=A n^{2}+B n+C \tag{5}
\end{equation*}
$$

where A is about $\frac{1}{2}$, and $B n+C$ is a correction term to make up for the jagged edge. We have to find what A, B and C are. First, we rewrite (5) as

$$
\begin{equation*}
0+1+2+\cdots+n=A n^{2}+B n+C \tag{6}
\end{equation*}
$$

and let $n=0$; this tells us $C=0$. Next, we add $n+1$ to both sides of (5) or (6):

$$
\begin{aligned}
1+2+\cdots+n+(n+1) & =A n^{2}+B n+(n+1) \\
& =A(n+1)^{2}+B(n+1)
\end{aligned}
$$

Expanding $(n+1)^{2}=n^{2}+2 n+1$, we get

$$
\begin{equation*}
A n^{2}+(B+1) n+1=A n^{2}+(2 A+B) n+(A+B) \tag{7}
\end{equation*}
$$

Comparing coefficients on both sides of (7), we get

$$
\begin{aligned}
B+1 & =2 A+B \\
1 & =A+B
\end{aligned}
$$

Solving, we get $A=\frac{1}{2}, B=\frac{1}{2}$, and hence

$$
\begin{equation*}
1+2+\cdots+n=\frac{1}{2} n^{2}+\frac{1}{2} n \tag{8}
\end{equation*}
$$

This is a more cumbersome way to find (8) than what we did in III, but the method generalizes to give a formula for (3). We start by assuming

$$
\begin{equation*}
1^{2}+2^{2}+\cdots+n^{2}=A n^{3}+B n^{2}+C n \tag{9}
\end{equation*}
$$

Now add $(n+1)^{2}$ to both sides of (9). Combine coefficients of powers of n, and you get 3 equations in A, B and C. The nice thing is that these equations are triangular, so easy to solve. What equations do you get? What is their solution?
VII. What is the formula for

$$
1^{2}+2^{2}+\cdots+n^{2} ?
$$

VIII. Can you find a formula for

$$
1^{3}+2^{3}+\cdots+n^{3} ?
$$

IX. How do we know our formulas from VII and VIII are correct?

