Math Circle: Error Correcting Codes

Prof. Wickerhauser

1 Codes

A code is way to convert words into Os and 1s to send over the internet. What works for
words will also work for sounds, pictures, and video, too. Let’s use just words for now, to
keep down the amount of arithmetic.

1. Base 2 numbers use just Os and 1s, instead of the ten symbols {0,1,2,3,4,5,6,7,8,9}.
Let’s use them to represent the 26 letters of the alphabet:

letter | base 10 | base 2 | letter | base 10 | base 2 || letter | base 10 | base 2
0 0 i 9 1001 r 18 10010

a 1 1 j 10 1010 S 19 10011
b 2 10 k 11 1011 t 20 10100

c 3 11 | 12 1100 u 21 10101

d 4 100 m 13 1101 v 22 10111

e 5 101 n 14 1110 W 23 11000

f 6 110 0 15 1111 X 24 11001

g 7 111 p 16 10000 y 25 11010
h 8 1000 q 17 10001 Z 26 11011

Thus “hello” is 8,5,12,12,15 as a base-10 code, and 1000,101,1100,1100,1111 as base-2
code numbers.

The “letter” represented by 0 is the space character which is needed to separate words.
Thus “go up” is 7,15,0,21,16 as base 10 code numbers.

* What is “help me” in the base 10 code?

* What is “hey” in the base 2 code?



You have to separate the code numbers somehow. If we add a leading zero to one-digit
code numbers, so for example f=6 becomes 06 (base 10), then every letter will use a 2
digit base 10 code number. Write “hello” using this zero padded coding.

We can likewise add leading zeros to give all the base 2 code numbers five bits. For
example f=110 becomes 00110 as a base 2 code number. Write “yes” using this base-2
zero padded coding.

Write a short secret word using 2-digit base 10 code numbers with zero padding, with
no commas or spaces or other separating characters. Exchange with your neighbor and
see if you can decode each other’s words.

Write a short secret word using 5-bit base 2 code numbers with zero padding, with no
commas or spaces or other separating characters. Exchange with your neighbor and
see if you can decode each other’s words.

. Base-2 codes for bigger alphabets, including numbers, capital letters, and punctuation
symbols, use more bits per letter. One such code, ASCII, uses 7 bits and can have a
maximum of 128 symbols. Note that

7 times
128 =2T=2%x2%x2%x2%x2x2x2

What is the formula for the number of possible symbols in a base-2 code with b-bit
code numbers?



* What is the formula for the number of possible symbols in a base-10 code with d-digit
code numbers?

** What is the formula for the number of possible symbols in a base-B code with k-digit
code numbers?

2 Error detection

Suppose that there is noise and error and some of the digits (or bits) in a code number are
received as a different number. By using bigger code numbers, such errors can be detected
by the receiver.

A parity bit is an extra bit added to the end of a base-2 code number so that the number
of 1 bits is even, which means the sum of the bits will be an even number.

Here is the table of base-2 code numbers padded to 5 bits with leading Os, listing the
extra parity bit needed to make the sum of the digits an even number:

letter | base 2 | parity || letter | base 2 | parity || letter | base 2 | parity

00000 | 0 i 01001 | O r 10010 | O
a 00001 | 1 j 01010 | O s 10011 | 1
b 00010 | 1 k 01011 | 1 t 10100 | O
c 00011 | O 1 01100 | O u 10101 | 1
d 00100 | 1 m 01101 | 1 v 10111 | 0
e 00101 | O n 01110 | 1 W 11000 | O
f 00110 | O 0 01111 ] 0 X 11001 | 1
g 00111 | 1 p 10000 | 1 y 11010 | 1
h 01000 | 1 q 10001 | O zZ 11011 | O

A checksum is an extra code number which is computed from the other code numbers
and sent along with the message. The receiver recomputes the checksum from the received
message to increase confidence in the correctness of the message.

1. With the parity bits appended, each code number takes 6 bits. Thus b=000101 and
z=110110.

For this section, we will always use base-2 code words, padded to 6 bits with leading
zeros and a parity bit at the end.



* Decode the base-2 message 010001 010010 000000 010001 011110.

* You have been sent the secret password as a base-2 message
100001 010001 011000011010 110011,

but one of the bits has been flipped. Which letter is incorrect?

Write a six-letter secret word in this 6-bit code, change exactly one bit to a wrong
value, and exchange with your neighbor. See who can find the wrong letter first.

2. For this section, use the first table of base 10 code numbers, padded with one leading
0 if necessary to get 2 digits per code number.

Suppose the checksum is computed by adding the code numbers and then keeping only
the last two digits, equivalent to the remainder after division by 100, and written
(mod 100).

For example, the message “hello” or 08051212 15 has checksum
84+5+124 12+ 15=52=52 (mod 100),

while “go up to the house” is 07150021 16 0020 15002008 050008 1521 1905, with a
checksum of

74+15+04214+16+0420+15+0420+845+0+8+15+214+19+5 = 195 = 95  (mod 100).

Will this checksum detect every single-digit error?

Change two different digits in the code for “hello” so that the result has the same
checksum 52.



* Change as many digits as you like in the code for “hello” so that the result is an English
word that has the same checksum 52.

3. If a checksum can take N values, and two or more wrong digits are randomly chosen
(not by any design), then the received and computed checksums will falsely agree with
probability only 1/N. Hence the two-digit checksum, where N = 100, will detect
1 —1/100 = 99% of random two-or-more-digit errors.

Suppose we add the code numbers and keep the last 3 digits as a checksum (reduce
mod 1000). What fraction of random two-or-more-digit errors will this detect?

* In this base 10 code, the space character has value 00, so adding extra spaces will not
change the checksum. Give an example of adding or subtracting spaces to a phrase
that changes its meaning.

Rearranging the order of letters in a messaage will not change this checksum. Give an
example of two words or phrases with the same letters in different order that will have
the same checksum.



3 Error correction

By adding enough extra information, it is possible to detect where a limited number of errors
occurred. The interesting problem is to do this efficiently, so that the extra information takes
up as little space as possible.

1. Suppose that we wish to send only Os and 1s but with greater confidence that they
are received correctly. One way is the repetition code: send 000 for 0 and 111 for 1.
A single bit error would turn 000 into 001, 010, or 100, and would turn 111 into 110,
101, or 0O11.

The Hamming distance between two base-2 code numbers is the number of bits that
differ between them. For example, the Hamming distance between 000 and 010 is 1,
while the Hamming distance between 111 and 010 is 2.

A Hamming code is a code containing a limited number of the possible base-2 code
numbers. An error is detected if a received number is not a valid code number, and then
it can be corrected to the nearest code number by Hamming distance. For example,
in the repetition code the letter f=00110 becomes

000000111111 000,
and is recoverable from the string below which has had an occasional bit flipped:
001000111 101 000.

Replacing any triple other than 000 or 111 with the nearer of (000,111) by Hamming
distance fixes the flipped bits.

(Note that this repetition code can correct multiple errors, but only if there is no more
than one error per repeated bit.)

Find the correct sequence of Os and 1s given a received message 011 111 100000010 111,
which is a single letter from the first table encoded with the repetition code.

How many times must a bit be repeated if we wish to correct any combination of 2
errors?

* How many times must a bit be repeated if we wish to correct any combination of k
errors?



* Base 2 codewords with 3 bits can be visualized as the corners of a unit cube. One
corner is the origin 000, the farthest corner from it diagonally has coordinates 111.
The nearest corners to 000 are along the coordinate axes and have coordinates 100,
010, and 001. Draw a picture to see that two corners of the cube are connected by an
edge if and only if the Hamming distance between them is 1.

** Base 2 codewords with N bits can be visualized as the corners of an N-dimensional
unit cube. One corner is the origin 00...0 (a string of N 0s), the farthest corner
from it diagonally is 11...1 (a string of N 1s). The nearest corners are along the N
coordinate axes and have coordinates 10...0, 010...0, and so on up to 0...01. Show
that two corners of the N-cube are connected by an edge if and only if the Hamming
distance between them is 1.



2. Extra data for error correction can be mixed with the message bits. One clever way
to do this is Hamming’s 7,4 code which uses 7 total bits to send 4 message bits (plus
3 parity bits) so that any single bit error (among the 7) can be detected and fixed.

The code numbers base 2 consist of 7 bits, named

p1 P2 di p3 dy ds dy,

where dy, ds, d3, dy are data (or message) bits, while pq, ps, p3 are parity bits added for
error correction. These parity bits cover overlapping subsets of the data bits:

e Bit p; is a parity bit for di, ds, dy, so it is 0 if d; + dy + d4 is even and 1 if that
sum is odd.

e Bit p, is a parity bit for di, ds, dy, so it is 0 if d; + d3 + d4 is even and 1 if that
sum is odd.

e Bit p3 is a parity bit for ds, ds, dy, so it is 0 if dy + d3 + d4 is even and 1 if that
sum is odd.

For example, the data quadruplet d;dsdsdy, = 0110 will have parity bits p; = 1, ps = 1,
and p3 = 0. The resulting Hamming code number base 2 will be p1podipsdadsdy =
1100110.

* Find the Hamming 7,4 code number base 2 for the data 0000 and for the data 1111.

* Break up the bit string 01010110 1010 into three 4-bit pieces and find the three Ham-
ming 7,4 code numbers base 2 for the pieces.

3. The location of a single bit error in a 7-bit Hamming code number is computed from
the parity bits.

If the received code number is pipadyp3dadsdy, then the computed parity bits p’ are:



o p| =0if dy +dy + dy is even and 1 if that sum is odd.
o p, =0if dy +ds + dy is even and 1 if that sum is odd.
o py =0if dy + ds + dy is even and 1 if that sum is odd.
For example, the 7-bit code number p;pydipsdadsd, = 0100110 gives p} = 1, ph = 0,

and pi = 0. Note that p] # p; and p), # ps, although p; = p3. This indicates an error,
and indeed there is a flipped bit at location 3=011 (base 2).

Find py, ps, and p3 for 1011011.

Compute p}, ph, and pj for 1011011.

. The error bit is at location g3q2q; base 2, where ¢; = 1 if p)| # p; with ¢; =0 if pj =1,
and so on. Notice that the error corrector gives the index of the bad bit in reverse
base-2 notation.

For example, the data 0110 which becomes the code number 1100110 has p; = 1,
p2 = 1, p3 = 0. Suppose bit number 1 is flipped during transmission to give 0100110.
Then p) =0 # p1, ph =1 =po, and p3 = 0 = p3. Then ¢ =1, g2 = 0, and g3 = 0, so
the error corrector says fix the bit at position g3gaq; = 001 (base 2) = 1 (base 10).

Compute ¢q, g2, and ¢3 for 1011011. Which bit is flipped?

Find the wrong bit in the Hamming 7,4 code string 1010011 and extract the corrected
4 bits of data.



5. Since ¢ is 0 if and only if p; = p}, and p; is chosen such that p; +dy + dy + dy is even,
another way to compute ¢; (and similarly ¢o and ¢3) is

e g1 = 0if p; +dy + dy + dy is even and 1 if that sum is odd.
e ¢o = 0if po + dy + ds + dy is even and 1 if that sum is odd.
o g3 = 0 if p3 4+ dy + d3 + dy is even and 1 if that sum is odd.

Note that g3goqr = 000 if there is no error. Otherwise, the error is at the location
whose base 2 index is q3q2q1 > 0.

* Use this method to determine which bit is incorrect in the Hamming code number
1110111

* The sequence 1000011 1000011 1010101 0010010 1001100 consists of five Hamming 7,4
code strings which encode four letters as 5-bit code numbers. One of the bits is wrong.
Figure out which bit is wrong and recover the word.

4 Homework

There is no homework. Yay!
But you might want to read the Wikipedia entry for Hamming(7,4).

10



