P-Adic Integers

October 16, 2015

1 Modular Arithmetic

1.1 well known number system

- $\mathbb{N}=$ the NATURAL NUMBERS $0,1,2,3, \ldots$.
- $\mathbb{Z}=$ the INTEGERS $\ldots,-2,-1,0,1,2, \ldots$.
- $\mathbb{Q}=$ the RATIONAL NUMBERS $\frac{a}{b}, a, b \in \mathbb{Z}, b \neq 0$..
- $\mathbb{R}=$ the REAL NUMBERS, e.g., $\pi:=3.1415926 \ldots$

$$
\{\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}\}<-------->\{\text { Modular Arithmetic }\}
$$

1.2 integers $\bmod n$
 $2=0$!!!

When $n \geqslant 2$, there is a very small number system:

$$
\mathbb{Z} / n \mathbb{Z}:=\{0,1,2, \ldots, n-1\} .
$$

For example
$\mathrm{n}=2, \mathbb{Z} / 2 \mathbb{Z}=\{0,1\}$.
$\mathrm{n}=3, \mathbb{Z} / 3 \mathbb{Z}=\{0,1,2\}$.
$\mathrm{n}=5, \mathbb{Z} / 5 \mathbb{Z}=\{0,1,2,3,4\}$.

2 Algorithm on Modular

Let us take the above example $\mathrm{n}=5$.

2.1 Addition

$3+4=7 \equiv 2(\bmod 5)$.
$8+4=12 \equiv 2(\bmod 5)$.

2.2 Subtraction(leave to you)

$1-4=$?
$6-4=?$

2.3 Multiplication

$2 \cdot 4=8 \equiv 3(\bmod 5)$.
$7 \cdot 4=28 \equiv 3(\bmod 5)$.

2.4 Division

Let $\mathrm{n}=5, \mathbb{Z} / 5 \mathbb{Z}=\{0,1,2,3,4\}$.

- Problem

What is $\frac{1}{3}$?
The division may not exist!!!
let $\mathrm{n}=6, \mathbb{Z} / 6 \mathbb{Z}=\{0,1,2,3,4,5\}$.

- Problem

Does there exist $\frac{1}{2}$?

- Fact

When n is a prime number, the division is always valid.

3 P expansion

$\{$ Real Numbers $\}<--->$ \{Decimal Expansion $\} \quad$ \{P-adic Numbers $\}$
We can express any real number as

$$
C_{n} C_{n-1} \ldots C_{0} \cdot C_{-1} C_{-2} \ldots, \quad 0 \leq C_{i} \leq 9
$$

which is called digit.

- Example
$\frac{1}{3}=0.3333 \ldots$,
$\frac{4}{3}=1.3333 \ldots$,
$\frac{1}{4}=0.2500 \ldots$,

$4 \quad \mathrm{P}$-Adic Integers and its algorithm

Let $\mathrm{p}=3$.
\mathbf{Z}_{3} consists of "formal" infinite sums

$$
a_{0}+a_{1} \cdot 3+a_{2} \cdot 3^{2}+\ldots, a_{i} \in\{0,1,2\}
$$

What is 22 in \mathbf{Z}_{3} ?

- Exercise

Write down the similar expression of 37 for \mathbb{Z}_{5}.

4.1 Addition-why infinite sum need to be allowed

Let $\mathrm{p}=3$,
$\alpha=2+2 \cdot p+p^{2}$.
$\beta=2+p$.
$\alpha+\beta=$

- Exercise

Let $\mathrm{p}=5$

$$
\begin{aligned}
& \alpha=2+2 \cdot p+p^{2} . \\
& \beta=4+3 \cdot p . \\
& \alpha+\beta=?
\end{aligned}
$$

And check that the expression is exactly the expression of 56 for \mathbb{Z}_{5}.

- Problem

Let $\mathrm{p}=3$

$$
\beta=2+2 \cdot p+2 \cdot p^{2}+2 \cdot p^{3}+\ldots
$$

We have $\beta+1=0$, in other words, the p -expansion of -1 is

$$
2+2 \cdot p+2 \cdot p^{2}+2 \cdot p^{3}+\ldots
$$

