Dissections

$$
1 / 24 / 2016
$$

A dissection of a polygon is a decomposition of the polygon into finitely many polygons (called pieces). In the figure below, the triangle A and quadrilateral B are dissected into triangles. The pentagon and the hexagon are each dissected into four pieces.

Problem 1

Draw some quadrilaterals, pentagons, hexagons, heptagons, and octagons, and dissect them into triangles.

Problem 2

Can any polygon with N sides be dissected into triangles for all values of N ?

Two polygons A and B are congruent by dissection if A can be dissected into pieces A_{1}, A_{2}, A_{3}, \ldots, A_{n}, and B can be dissected into pieces $B_{1}, B_{2}, B_{3}, \ldots, B_{n}$ such that $A_{1} \cong B_{1}, A_{2} \cong B_{2}, \ldots$, $A_{n} \cong B_{n},($ where \cong means congruent to $)$.

The square and the L-shaped hexagon in the above Figure are congruent by dissection.
Property: Two polygons that are congruent by dissection have the same area.

Problem 3

Suppose right triangle $A B C\left(\angle A B C=90^{\circ}\right)$ and rectangle $D E F G$ have the same area and that $A B=D E$. Show that they are congruent by dissection.

Problem 4

Suppose obtuse triangle $A B C\left(\angle A B C>90^{\circ}\right)$ and rectangle $D E F G$ have the same area and that $A B=D E$. Show that they are congruent by dissection.

Problem 5

Suppose acute triangle $A B C$ and rectangle $D E F G$ have the same area and that $A B=D E$. Show that they are congruent by dissection.

Problem 6

Suppose rectangle $A B C D$ has side lengths $A B=C D=12$ and $B C=A D=3$. Show that $A B C D$ is congruent by dissection to a square whose side is 6 .

Problem 7

Suppose rectangle $A B C D$ has side lengths $A B=C D=9$ and $B C=A D=4$. Show that $A B C D$ is congruent by dissection to a square whose side is 6 .

Problem 8

Suppose rectangle $A B C D$ has side lengths $A B=C D=25$ and $B C=A D=4$. Show that $A B C D$ is congruent by dissection to a square whose side is 10 .

Problem 9

Show that any rectangle is congruent by dissection to a square of the same area.

Problem 10

In the figure below, the hexagon $A B C D E F$ is comprised of two adjacent squares $A B G F$ and $C D E G$. Show that $A B C D E F$ is congruent by dissection to a square.

Problem 11

Three-dimensional dissection of a polyhedron is defined analogously to a polygon dissection (each piece of the dissection must be a polyhedron). Show that a $4 \times 5 \times 6$ rectangular prism is congruent by dissection to a $3 \times 5 \times 8$ rectangular prism.

Problem 12

Show that a $3 \times 25 \times 45$ rectangular prism is congruent by dissection to a $15 \times 15 \times 15$ cube.

Problem 13

Show that a $24 \times 25 \times 45$ rectangular prism is congruent by dissection to a $30 \times 30 \times 30$ cube.

Problem 14

Show that any rectangular prism is congruent by dissection to a cube of the same volume.

Problem 15

Show that any two polygons with the same area are congruent by dissection!

