Dissections

1/24/2016

A dissection of a polygon is a decomposition of the polygon into finitely many polygons (called **pieces**). In the figure below, the triangle A and quadrilateral B are dissected into triangles. The pentagon and the hexagon are each dissected into four pieces.

Problem 1

Draw some quadrilaterals, pentagons, hexagons, heptagons, and octagons, and dissect them into triangles.

Can any polygon with N sides be dissected into triangles for all values of N?

Two polygons A and B are congruent by dissection if A can be dissected into pieces A_1 , A_2 , A_3 , ..., A_n , and B can be dissected into pieces B_1 , B_2 , B_3 , ..., B_n such that $A_1 \cong B_1$, $A_2 \cong B_2$, ..., $A_n \cong B_n$, (where \cong means **congruent** to).

The square and the L-shaped hexagon in the above Figure are congruent by dissection.

Property: Two polygons that are congruent by dissection have the same area.

Problem 3

Suppose right triangle ABC ($\angle ABC = 90^{\circ}$) and rectangle DEFG have the same area and that AB = DE. Show that they are congruent by dissection.

Problem 4

Suppose obtuse triangle ABC ($\angle ABC > 90^{\circ}$) and rectangle DEFG have the same area and that AB = DE. Show that they are congruent by dissection.

Suppose acute triangle ABC and rectangle DEFG have the same area and that AB = DE. Show that they are congruent by dissection.

Problem 6

Suppose rectangle ABCD has side lengths AB = CD = 12 and BC = AD = 3. Show that ABCD is congruent by dissection to a square whose side is 6.

Suppose rectangle ABCD has side lengths AB = CD = 9 and BC = AD = 4. Show that ABCD is congruent by dissection to a square whose side is 6.

Problem 8

Suppose rectangle ABCD has side lengths AB = CD = 25 and BC = AD = 4. Show that ABCD is congruent by dissection to a square whose side is 10.

Show that any rectangle is congruent by dissection to a square of the same area.

In the figure below, the hexagon ABCDEF is comprised of two adjacent squares ABGF and CDEG. Show that ABCDEF is congruent by dissection to a square.

Three-dimensional dissection of a polyhedron is defined analogously to a polygon dissection (each piece of the dissection must be a polyhedron). Show that a $4 \times 5 \times 6$ rectangular prism is congruent by dissection to a $3 \times 5 \times 8$ rectangular prism.

Problem 12

Show that a $3 \times 25 \times 45$ rectangular prism is congruent by dissection to a $15 \times 15 \times 15$ cube.

Show that a $24 \times 25 \times 45$ rectangular prism is congruent by dissection to a $30 \times 30 \times 30$ cube.

Problem 14

Show that any rectangular prism is congruent by dissection to a cube of the same volume.

Show that any two polygons with the same area are congruent by dissection!