We are going to learn something about the most important mathematical constant

π

which is the ratio of the circumference of a circle to its diameter. It is approximately

$$
\pi \approx 3.14159265359
$$

In more decimals

$$
\pi \approx 3.14159265358979323846264338327950288419716939937510 .
$$

Here are the first one thousand digits of π.

[^0]1. Does your calculator or cellphone compute π ? It is OK if not.
2. Complete the following table, relating the circumference of a circle to the length of its diameter.

diameter (in meters)	circumference (in meters)
1	
2	
5	

3. π is also the ratio of the area of a circle to the square of its radius. Complete the following table, relating the area of a circle to the length of its radius.

radius (in meters)	area (in square meters)
1	
2	54

4. Archimedes computed π by approximating the circumference of circle by inscribed and circumscribed regular polygons. Here is his method.
Start with initial values

$$
\mathrm{C}_{1}=4, \quad \mathrm{I}_{1}=2 \sqrt{2}
$$

and let for each $n \geqslant 1$

$$
C_{n+1}=\frac{2 C_{n} I_{n}}{C_{n}+I_{n}}, \quad I_{n+1}=\sqrt{C_{n+1} I_{n}}
$$

For example

$$
\begin{array}{ll}
\mathrm{C}_{2}=\frac{2 \mathrm{C}_{1} \mathrm{I}_{1}}{\mathrm{C}_{1}+\mathrm{I}_{1}}, & \mathrm{I}_{2}=\sqrt{\mathrm{C}_{2} \mathrm{I}_{1}}, \\
\mathrm{C}_{3}=\frac{2 \mathrm{C}_{2} \mathrm{I}_{2}}{\mathrm{C}_{2}+\mathrm{I}_{2}}, & \mathrm{I}_{3}=\sqrt{\mathrm{C}_{3} \mathrm{I}_{2}}, \\
\mathrm{C}_{4}=\frac{2 \mathrm{C}_{3} \mathrm{I}_{3}}{\mathrm{C}_{3}+\mathrm{I}_{3}}, & \mathrm{I}_{4}=\sqrt{\mathrm{C}_{4} \mathrm{I}_{3}} .
\end{array}
$$

Complete the following table, using your calculator.

n	C_{n}	I_{n}
1		
2		
3		
4		
5		

Are you getting better and better approximations for π through numbers $\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}, \ldots$?

What about $\mathrm{I}_{1}, \mathrm{I}_{2}, \mathrm{I}_{3}, \ldots$?
5. Ramanujan, an Indian mathematicien, found the following elegant formula for computing π.

$$
\pi=\frac{\frac{9801}{2 \sqrt{2}}}{\sum_{n=0}^{\infty} \frac{(4 n)!(1103+26390 n)}{(n!)^{4}(396)^{4 n}}}
$$

By this I mean π can be approximated successively by the following numbers which I ask you to compute using your calculator.

$$
\begin{gathered}
\pi \approx \frac{\frac{9801}{2 \sqrt{2}}}{1103}= \\
\pi \approx \frac{\frac{9801}{2 \sqrt{2}}}{1103+\frac{(1 \times 2 \times 3 \times 4) \times(1103+26390)}{1^{4} \times 396^{4}}}= \\
\pi \approx \frac{\frac{9801}{2 \sqrt{2}}}{1103+\frac{(1 \times 2 \times 3 \times 4) \times(1103+26390)}{1^{4} \times 396^{4}}+\frac{(1 \times 2 \times 3 \times \cdots \times 8) \times(1103+26390 \times 2)}{(1 \times 2)^{4} \times 396^{8}}}=
\end{gathered}
$$

Are you getting better and better approximations for π ?
6. Lord Brouncker found the following approximation for π by continued fractions.

$$
\pi=\frac{4}{1+\frac{1^{2}}{3+\frac{2^{2}}{5+\frac{3^{2}}{7^{2}}}}}
$$

By this I mean π can be approximate successively by the following numbers which I ask you to compute using your calculator.

$$
\begin{gathered}
\pi \approx \frac{4}{1+\frac{1^{2}}{3}}= \\
\pi \approx \frac{4}{1+\frac{1^{2}}{3+\frac{2^{2}}{5}}}= \\
\pi \approx \frac{4}{1+\frac{1^{2}}{3+\frac{2^{2}}{5+\frac{3^{2}}{7}}}}=
\end{gathered}
$$

Are you getting better and better approximations for π ?
What is the next approximation in this method? Compute it with your calculator.

Congradulations for completing the previous activities! The next two activities are for those of you who know some very elementary triginometry. It justifies the Archimedes method (used in activity 4) to approxomate π.
Fix a circle of unit diameter, and let $n \geqslant 3$ be an arbitrary natural number. The idea is to approximate the circumference of this circle (which equals π) by the circumference of regular n sided polygons inscribed and circumscribed in our circle.
7. Let C and I, respectively, denote the circumference of the circumscribed and inscribed regular n-gons in our circle. Can you find a formula for C and I , relating them to n ?
(Hint: concentrate on one edge of your polygon; use trigonometric functions sin and tan; maybe it helps to look at the answer in the footnote ${ }^{1}$.)

[^1]8. Let C^{\prime} and I^{\prime}, respectively, denote the circumference of the circumscribed and inscribed regular 2 n -gons in our circle. By the previous activity you know that
$$
C=n \tan \frac{\pi}{n}, \quad I=n \sin \frac{\pi}{n}, \quad C^{\prime}=2 n \tan \frac{\pi}{2 n}, \quad I^{\prime}=2 n \sin \frac{\pi}{2 n} .
$$

Can you prove the follwoing two formulas?

$$
\mathrm{C}^{\prime}=\frac{2 \mathrm{CI}}{\mathrm{C}+\mathrm{I}}, \quad \mathrm{I}^{\prime}=\sqrt{\mathrm{C}^{\prime} \mathrm{I}}
$$

(Hint: for the first one, start from $\frac{2 \mathrm{CI}}{\mathrm{C}+\mathrm{I}}=\frac{2}{\frac{1}{\mathrm{C}}+\frac{1}{\mathrm{I}}}$, and use trigonometric identity $\frac{\sin \theta}{1+\cos \theta}=\tan \frac{\theta}{2}$; for the second one, start from $\sqrt{\mathrm{C}^{\prime} \mathrm{I}}$ and use trigonometric identity $\sin (2 \theta)=2 \sin \theta \cdot \cos \theta$.)

[^0]: 3.141592653589793238462643383279502884197169399375105820974944 5923078164062862089986280348253421170679821480865132823066470938446095 5058223172535940812848111745028410270193852110555964462294895493038196 4428810975665933446128475648233786783165271201909145648566923460348610 4543266482133936072602491412737245870066063155881748815209209628292540 9171536436789259036001133053054882046652138414695194151160943305727036 5759591953092186117381932611793105118548074462379962749567351885752724 8912279381830119491298336733624406566430860213949463952247371907021798 6094370277053921717629317675238467481846766940513200056812714526356082 7785771342757789609173637178721468440901224953430146549585371050792279 6892589235420199561121290219608640344181598136297747713099605187072113 4999999837297804995105973173281609631859502445945534690830264252230825 3344685035261931188171010003137838752886587533208381420617177669147303 5982534904287554687311595628638823537875937519577818577805321712268066 130019278766111959092164201989

[^1]: ${ }^{1}$ Answer: $C=n \tan \frac{\pi}{n}$, and $I=n \sin \frac{\pi}{n}$.

