WUSTL Math Circle

Order Appearing in Coloring Large Set of Data

Here are some complete graphs.

1. How many K_{3} do you see inside K_{4} ?
2. How many K_{4} do you see inside K_{6} ?
3. Here I have colored the edges of K_{5} with two colors red and blue (in black-white printing, red edges are dashed and blue edges are solid) such that no monochromatic triangle appears.

Can you do the same with K_{6} ?
4. Color the edges of K_{6} with two colors say red and blue such that no red K_{3} and no blue K_{4} appear.
5. Color the edges of K_{7} with two colors say red and blue such that no red K_{3} and no blue K_{4} appear.
6. Color the edges of K_{8} with two colors say red and blue such that no red K_{3} and no blue K_{4} appear.
7. Can you color the edges of K_{9} with two colors say red and blue such that no red K_{3} and no blue K_{4} appear?
8. Can you show that this is impossible?
9. Find the largest complete graph you can with a coloring of its edges with three colors say red, blue and yellow such that no monochromatic triangle appear. ${ }^{1}$

[^0]We would say that $4,8,12$ form a 3 -term arithmetic progression, because the distance between 4 and 8 equals the distance between 8 and 12 .

10. Which of the following sequences are in arithmetic progression?

$$
5,14,23
$$

$5,14,23,33$
$5,14,23,32$
11. Here is a coloring of integers from 1 to 8 with two colors red and blue such that no monochromatic 3-term arithmetic progression appears.

$$
\begin{array}{cccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
R & B & B & R & R & B & B & R
\end{array}
$$

Either do the same for integers from 1 to 9 , or prove that this is impossible.
12. Color integers from 1 to 15 with three colors such that no monochromatic 3-term arithmetic progression appears.
13. Color integers from 1 to 20 with three colors such that no monochromatic 3-term arithmetic progression appears. ${ }^{2}$

[^1]14. Try to find your largest integer N , with a cloring of integers from 1 to N with two colors such that no monochromatic 4-term arithmetic progression appears. ${ }^{3}$

[^2]This mathematics is called Ramsey Theory, with slogan

TOTAL DISORDER IS IMPOSSIBLE.

More grown-up, or even now!, you could follow it from the book: Graham, R. L., B. Rothschild, J. H. Spencer, Ramsey Theory, Second Edition, John Wiley and Sons, 1990.

[^0]: ${ }^{1}$ World record is K_{16}.

[^1]: ${ }^{2}$ World record is 26 .

[^2]: ${ }^{3}$ World record is 34 .

