The Game of Set

Feb 11th, 2018

1. Let S denote a standard SET deck. S contains one of each possible type of card. How many cards are there in S ?
2. How many sets are there in S ?
3. Prove the Fundamental Theorem of SET:

Theorem 1 Given two cards, $x, y \in S$; there is a unique card $z \in S$ for which (x, y, z) is a set.
4. Given two set cards, x and y, define their product, $x \star y$, to be the unique card for which $(x, y, x \star y)$ is a set.

What properties does this multiplication have? Is it commutative? Is it associative? Is there an identity?
5. There should be a correspondence between S and the integers $\{1,2, \ldots, 81\}$ by writing the numbers in base 3. How does this correspondence work?
Hint: Another way to think of this is each card can be though of as a vector ($x_{1}, x_{2}, x_{3}, x_{4}$) where each of the x_{i} are either 0,1 or 2 . (How is this the same as thinking in base 3 ?)
6. By writing elements in S as vectors (or as numbers between 0 and 80 in base 3), determine the set product for these numbers.
Hint: look at many examples and look at what happens in each component of the vector.
(The set of vectors above is called Z_{3}^{4}).
7. Compute the following products:

1. $(1,0,0,0) \star(1,0,0,1)=$
2. $(0,1,0,0) \star(0,2,0,1)=$
3. $(2,2,2,2) \star(0,2,2,1)=$
4. $(0,0,0,0) \star(1,1,1,1)=$
5. Given a card $x \in S$, how many sets does x belong to?
6. Does your answer in Question 8 agree with your answer in Question 2?
7. What is the smallest stack such that every card must have a set in the stack? In other words, you want to deal o a number of cards, n, so that you know, without looking at the cards, that every one of those cards is in at least one set. How big must n be?
8. Now, what is the largest stack with no sets?

Hint. First consider the game of Set with only 2 properties (9 cards in the deck), say shape and number.
12. (Open Question) You can generalize the game of SET by adding more Features, say k; or adding more options in each feature, say we used n shapes, colors, shadings, etc. Answer the rest of the questions with this new deck of Set cards. (Many of the questions, such as Question 11 have not been answered in this general situation.)

