
DINNER PARTIES AND COLORING BOOKS

I. DINING IN CIRCLES

Congratulations! You are in charge of the seating arrangements for N ≥ 3 guests at
a dinner party.

Two tables are set with N equally spaced seats: one for dinner, and one for dessert.
Only, the guests all expect new dining partners on each side for dessert.

Problem 1. Once you choose the seating for dinner, how many different ways are
there to arrange the dessert seat assignments? (Two seat arrangements are con-
sidered equivalent if one is a rotation or flip of the other.) This will depend on N : in
particular, what is the smallest number of guests with which this is possible?

Problem 2. What is the probability, if you just let the guests choose their dessert
seats blindfolded, that they all have new dining partners? Try for a few small N , then
think about what happens as N gets really big!

[The next page has some tables for you to set for dessert, so you don’t have to think
about this all in your head. If the guests were numbered 1 to N going around the
dinner table, put these numbers in the dessert place settings to describe how you’ve
rearranged their seats.]
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N = 4

N = 5

N = 6

N = 7

More dinner tables are attached at the end of this packet.

Problem 3. Your first dinner party was such a success that you are again asked to
arrange the seats, this time at just one table. This time, each of the N ≥ 3 guests is
a friend of at least half of the other people in the group . . . but they all expect to sit
between friends! Is this actually possible??



II. WALKING IN CIRCLES

Perhaps you’ve seen this one before: consider the map of the old Prussian city of
Königsberg:

Here’s a more schematic picture:

Problem 4. Can you devise a walk through the city that crosses each of the seven
bridges exactly once?



III. CIRCLES IN GRAPHS

The solutions to the last two problems are best thought of in terms of graphs –
which are just sets of vertices (points) with edges connecting some pairs of (distinct)
points:

A circuit is a path through a graph that starts and ends at the same vertex. The
number of edges emerging from a vertex is the valence of that vertex.

In Problem 3, the vertices are guests, and edges connect friends. The problem
is now to produce a Hamiltonian circuit, i.e. a circuit which uses each vertex exactly
once.

In Problem 4, the Königsberg problem, the vertices are land masses, and edges
are bridges. Can we find an Eulerian path, i.e. a path using each edge exactly
once?

Problem 5. Try drawing the Königsberg graph!

Problem 6. Do the graphs on this page have Hamiltonian circuits? Eulerian paths?



Restating our problems in terms of graphs allows us to think more clearly about
them. There are also some powerful tools available:

Euler’s Theorem says that if a graph has an Eulerian path, then it has either zero or
two vertices of odd valence. (This is true simply because each time an Eulerian path
passes through a vertex, it “uses” 2 edges, with the exception of the two endpoints,
if they are distinct.) Why does this settle Problem 4?

Problem 7. Change the answer to problem 4 by adding one bridge.

Dirac’s Theorem says that if a graph has N ≥ 3 vertices and no “parallel” edges,
and each vertex has valence at least N/2, then a Hamiltonian circuit exists. Why
does this solve Problem 3?

Dirac’s theorem is more complicated to justify. Suppose there were graphs with N

vertices and the stated properties, but having no Hamiltonian cycle. Among these,
pick a graph G which is “maximal” in the sense that adding any edge gives you a
graph G′ with a Hamiltonian cycle (but the same vertices as G).
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Numbering the vertices of G “p1” thru “pN ” in the order given by this cycle, I claim that
for some 2 ≤ i ≤ N − 2, pi+1 is adjacent to p1 and pi is adjacent to pN . Otherwise,
there are at least N

2 −1 vertices pj (with j chosen from among 2, . . . , N −2) adjacent
to pN such that pj+1 is not adjacent to p1. Since p1 and pN are also not adjacent to
p1, that means there are at least N

2 +1 vertices not adjacent to p1, in contradiction to
the valence assumption.
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Consequently, p1 → p2 → · · · → pi → pN → pN−1 → · · · → pi+1 → p1 gives a
Hamiltonian cycle on G. This contradiction proves Dirac’s theorem.



IV. COLORING MAPS

When coloring in a map, you should always use different colors for countries that
share a border. (Don’t worry about shared corners – those don’t count.)

Problem 8. In each of the following maps, how few colors can you get away with?



Now look at these rather simpler “maps”:

Problem 9. If adjacent “countries” have distinct colors, how many different ways are
there to color these with k colors, for k = 2? 3? 4? 5?

Can you find a formula for any k?



V. THE FOUR-COLOR THEOREM

This famous result says that every map can be colored with four colors. Many in-
correct proofs were given, even published, before the correct (but extremely messy
and computer-assisted) proof by Kenneth Appel and Wolfgang Haken in 1976. Here
we’ll just show that six colors always suffice, which is much easier.

Problem 10. For each of the maps in Part IV, draw the dual graph: by putting a
vertex in each country, joining (only once!) those vertices whose countries share a
border, and finally adding a vertex for the “exterior of the map” and edges from it to
each country with an external boundary.

Note that each of these graphs can be drawn without any “over-under edge cross-
ings” – we say they are planar graphs.



In combinatorics, a k-coloring of the graph G is a labeling by {1, 2, . . . , k} of the
vertices such that vertices connected by an edge have distinct labels. If G is the
dual graph of a map, this is equivalent to coloring the map with k colors (with colors
replaced by numbers). In light of Problem 9, it may come as no surprise that there
is always a chromatic polynomial PG (of degree equal to the number of vertices of
G), such that PG(k) is the number of k-colorings of G.

So to prove the Six-Color Theorem, we must show that any planar graph G has
a 6-coloring. (This isn’t true for non-planar graphs!) Let E be the number of edges,
V the number of vertices, and F the number of regions into which G divides the
plane (including the “exterior region” that surrounds the graph). A famous result by
Euler says that F − E + V = 2.

If there are graphs with no 6-coloring, then let G be one with the smallest num-
ber of vertices – a “minimal criminal”.

Suppose every vertex of G had valence at least 6. Since each edge contains 2

vertices, we’d then have 2E ≥ 6V , or V ≤ 1
3E.

Each region has at least 3 edges bounding it, and each edge bounds no more than
2 regions: so 2E ≥ 3F , or F ≤ 2

3E.

Using Euler’s result,

2 = F − E + V ≤ 2

3
E − E +

1

3
E = 0,

which is absurd: 2 is bigger than 0!

So there must be a vertex v with valence ≤ 5. Remove it from G. Now you have a
graph with fewer vertices, so by “minimality” of G, this new graph has a 6-coloring.
But then G itself has a 6-coloring, since v had fewer than 6 neighbors! This contra-
diction proves the 6-color theorem (for planar graphs, and thus for maps).



VI. (NON-)PLANAR GRAPHS

Here are some graphs with “over-under edge crossings”: that is, they don’t live in
the plane the way I’ve drawn them. It might or might not be possible to redraw some
edges so that they do.

Problem 11. Which of these graphs is planar, i.e. can be redrawn without crossings?

Which ones have a 4-coloring? How is this related?



VII. COMBINATORICS

This is the branch of math that deals with counting things – and to which the study
of graphs, map-colorings, etc. belong. Here are a few more fun problems about
counting stuff. (In some cases using factorial notation n! = n ·(n−1) ·(n−2) · · · · ·2 ·1
may be convenient.)

Problem 12. There is an extremely small island in the middle of the Pacific Ocean
on which the inhabitants have only four letters in their written language: ∀, ∃, \, and
⊗. Also, every combination of these letters is a word in their language. How many
words do the islanders have consisting of no more than five letters?

Problem 13. King Arthur has invited all his knights to a feast. How many differ-
ent ways are there of sitting all 13 knights at their Round Table? As before, two
configurations which are rotations of each other are considered to be equal.

Problem 14. Chris and Anna want to trade Pokémon. Chris has 7 fire-type Poké-
mon, 5 water-type, and 4 grass-type. Anna has 3 fire, 5 water, and 6 grass. They
are willing to trade only one Pokémon each, and only for the same type. In how
many different ways can they accomplish this?

Problem 15. How many different ways can you rearrange the letters in the word
MATH? How about CIRCLE? or MATHEMATICS?

Problem 16. A triangulation of a convex n + 2-gon is a way to cut it into n triangles
by drawing some diagonals which do not meet inside the N -gon. Let cn denote the
number of triangulations of an (n + 2)-gon, called the nth Catalan number. Can you
find a formula? [Hint: count triangulated (n + 3)-gons with a marked edge in terms
of cn+1 and in terms of cn, to get a formula relating cn+1 and cn.]
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