1. Neatly complete the first eight rows of Pascal's Triangle:

2. A family has 5 children. What is the probability that they have:
A. Exactly three girls? $5 / 16$
B. At least two boys? $13 / 16$
C. $4 G, 1 B$ or $1 G, 4 B$? $5 / 16$
3. You flip one fair coin six times. What is the probability that you flip:
A. 3 Heads and 3 Tails? 5/16
B. $4 \mathrm{H}, 2 \mathrm{~T}$ or $2 \mathrm{H}, 4 \mathrm{~T}$? $15 / 32$
B. All heads or all tails? $1 / 32$
4. On this grid, you can only travel on the gridlines and only East (E) and North (N).
A. How many different paths are there from START to A? 4 blocks: 2 E's, 2 N's; 6 paths

START
B. How many different paths are there from START to B? 7 blocks: 4 E's; 3 N's: 35 paths
C. BONUS: What is the probability that a path from START to B passes through A? $6 * 3 / 35=18 / 35$

Pascal's Triangle provides exact answers to Questions \#2-4, above, but only estimates for the following questions.
5. Dummy and you have a total of 8 Spades. Estimate the probability that the other five Spades are divided:
A. 2-3 or 3-2? 5/8
B. 1-4 or 4-1? 5/16
C. $0-5$ or $5-0$? $1 / 16$
6. Dummy and you have a total of 9 Hearts. Estimate the probability that the other four Hearts are divided:
A. 2-2? $3 / 8$
B. $1-3$ or $3-1$? $1 / 2$
C. $0-4$ or $4-0$? $1 / 8$
7. Dummy and you have a total of 8 Diamonds, missing the Jack, $10,9,8$, and 2. You lead the Ace, King, and Queen of Diamonds. Estimate the probability that you take all the Diamond tricks. \qquad
The Diamonds must split 3-2 or 2-3: $\quad(10+10) / 32=5 / 8$
8. Dummy and you have a total of 7 Clubs, missing the Jack, $10,9,8,5$, and 2. You lead the Ace, King, and Queen of Clubs. Estimate the probability that you take all the Club tricks. \qquad
The Clubs must split 3-3: $20 / 64=\mathbf{5 / 1 6}$

It is often more convenient to express probabilities as percentages rather than as fractions. Of course, then each row must sum to 100%. Complete the first eight rows of Pascal's Percent Triangle. When needed, round to the nearest half of a percent. Due to rounding, some of your row sums will not be exactly 100%.

1. If Dummy and you are missing six cards in a suit, estimate the percent probability that they split:
A. 3-3? 31\%
B. $4-2$ or $2-4$? 46%
C. neither A nor B? 21\% [or 23\%]
2. Dummy and you have 10 Spades, missing the Queen, 4, and 2. If you lead the Ace and King, estimate the percent probability that you take all the Spade tricks. \qquad
They must split 1-2 or 2-1: $\quad 2 * 37.5=75 \%$
3. Dummy and you have 9 Diamonds, missing the Queen, Jack, 7, and 2. If you lead the Ace and King, estimate the percent probability that you take all the Diamond tricks. \qquad
They must split 2-2: 37.5\%
4. Dummy and you have 8 Hearts, missing the Queen, Jack, 6, 3, and 2. If you lead the Ace and King, estimate the percent probability that you take all the Heart tricks. \qquad
The only way is if the Q and J are a "doubleton" which can occur in two ways [E or W]: $2 / 32=6.125 \%$
5. Dummy and you have 9 Diamonds, missing the Queen, 7, and 2. If you lead the Ace and King, estimate the percent probability that you take all the Diamond tricks. \qquad
They must split 2-2 OR the Queen must be a "singleton" which can occur in two ways: $6 / 16+2 / 16=\mathbf{5 0 \%}$

CARD DISTRIBUTIONS - THE EXACT PROBABILITIES

For independent events such as boys/girls in a family [or flipping a fair coin], the probability of the next child [or coin] being "Girl" [or "tail"] remains 50\% and is not dependent on the gender of the previous child [or result of previous coin flip]. Because of that, Pascal's Triangle provides their exact distributions and probabilities. However, the probability that the "next" card is a Heart does change based on whether the previous cards were or were not Hearts. Each probability IS dependent on previous cards. Therefore the distribution of cards is a dependent event and Pascal's Triangle only provides (good) estimates of the distributions of the cards.

EXAMPLE

Dummy and you have 8 Hearts. According to Pascal's Triangle, the probability that West has 3 Hearts and East has 2 Hearts is approximately $10 / 32=\underline{\mathbf{3 1 . 2 5 \%}}$. Now let's compute the exact probability.

West and East have a total of 26 cards of which 5 are Hearts and $\mathbf{2 1}$ are not Hearts. Let's calculate the probability that your West opponent has exactly 3 Hearts.

The total number of different hands West could have is $C(26,13)=10,400,600$. The number of West hands with exactly 3 Hearts is $C(5,3)^{*} C(21,10)=3,527,160$. Probability $=C(5,3)^{*} C(21,10) / C(26,13)=\underline{\mathbf{3 3 . 9 \%}}[$ about 2.7% higher]

EXACT Probabilities versus "Pascal Triangle Estimates"

6A. If East and West have 5 Hearts, use the Table from page 2 to compute the estimated probability that they are split:

$$
3-2 \text { or } 2-3: \underline{\mathbf{2}} \mathbf{2} \mathbf{3 1 \%}=\mathbf{6 2 \%} ; \quad 4-1 \text { or } 1-4: \underline{\mathbf{2} * \mathbf{1 5} .5 \%=\mathbf{3 1} \%} \quad 5-0 \text { or } 0-5: \underline{\mathbf{2} * \mathbf{3} \%=\mathbf{6} \%}
$$

6B. Use the 'combination method' [above] to compute these exact probabilities.:

4-1 or $1-4: 2^{*} C(5,1) * C(21,12) / C(26,13)=\underline{\mathbf{2 8 . 3}} \mathbf{~} \quad$ \{about 3% lower)
$5-0$ or $0-5: 2^{*} C(5,0) * C(21,13) / C(26,13)=3.9 \% \quad$ \{about 2% lower

