DISTRIBUTION OF MISSING CARDS – A GOOD ESTIMATE

1. <u>Neatly</u> complete the first eight rows of Pascal's Triangle:

ĸ	OW #	PASCAL'S TRIANGLE 1 1 1 1 1				Total 1 2		
	0 1							
	2	1 2 1				4		
	3						+	
	4						1	
	5							
	6						+	
	7							
2.	A family	l has 5 children. What is	the probability that they have	ve:			<u> </u>	
	A. Exac	ctly three girls?	_ B. At least two boys? _		C. 4G, 1B <u>or</u> :	1G, 4B?		
3.								
		. 3 Heads and 3 Tails? B. 4H, 2T or 2H, 4T? B. All heads or all tails?						
4.		grid, you can only travel						
						А		
	gridlines and only East (E) and North (N). A. How many different paths are there from START to A?							
		wo paths could be: NNE						
	B. How many different paths are there from START to B?							
	C. BON	ONUS: What is the probability that a path from START to B passes through A?						
Pa			wers to Questions #2-4, abov		-	ollowing quest	ions.	
5.		my and you have a total of 8 Spades. Estimate the probability that the other five Spades are divided:						
5.							•	
c	A. 2-3 or 3-2? B. 1-4 or 4-1? C. 0-5 or 5-0? Dummy and you have a total of 9 Hearts. Estimate the probability that the other four Hearts are divided							
6.				·				
	A. 2-2?		B. 1-3 or 3-1?	(-0.4 or 4.0?			

Diamonds. Estimate the probability that you take all the Diamond tricks.

8. Dummy and you have a total of 7 Clubs, missing the Jack, 10, 9, 8, 5, and 2. You lead the Ace, King, and Queen of Clubs. Estimate the probability that you take all the Club tricks. _____

PASCAL'S TRIANGLE AS PERCENTS – STILL A GOOD ESTIMATE

It is often more convenient to express probabilities as percentages rather than as fractions. Of course, then <u>each row</u> <u>must sum to 100%</u>. Complete the first eight rows of Pascal's Percent Triangle. When needed, round to the nearest half of a percent. Due to rounding, some of your row sums will not be exactly 100%.

# of Cards	PASCAL'S TRIANGLE as PERCENTS	Total
0	100	100
1	50 50	100
2	25 50 25	
3		
4		
5		
6		
7		

1. If Dummy and you are missing five cards in a suit, estimate the percent probability that they split:

A. 3-2 or 2-3? _____ B. 4-1 or 1-4? ____ C. 4-0 or 0-4? _____

- 2. Dummy and you have 10 Spades, missing the Queen, 4, and 2. If you lead the Ace and King, estimate the percent probability that you take all the Spade tricks.
- 3. Dummy and you have 9 Diamonds, missing the Queen, Jack, 7, and 2. If you lead the Ace and King, estimate the percent probability that you take all the Diamond tricks.
- 4. Dummy and you have 8 Hearts, missing the Queen, Jack, 6, 3, and 2. If you lead the Ace and King, estimate the percent probability that you take all the Heart tricks.
- 5. Dummy and you have 9 Diamonds, missing the Queen, 8, 7, and 2. If you lead the Ace and King, estimate the percent probability that you take all the Diamond tricks.

Note: The answers to #3 and #5 are NOT the same!

CARD DISTRIBUTIONS – THE EXACT PROBABILITIES

For *independent events* such as boys/girls in a family [or flipping a fair coin], the probability of the next child [or coin] being "Girl" [or "tail"] remains 50% and is <u>not dependent</u> on the gender of the previous child [or result of previous coin flip]. Because of that, *Pascal's Triangle* provides their <u>exact</u> distributions and probabilities. However, the probability that the "next" card is a Heart <u>does change</u> based on whether the previous cards were or were not Hearts. Each probability <u>IS dependent</u> on previous cards. Therefore the distribution of cards is a *dependent event* and Pascal's Triangle only provides (good) estimates of the distributions of the cards.

EXAMPLE

<u>Dummy and you have 8 Hearts</u>. According to Pascal's Triangle (above), the probability that West has 3 Hearts and East has 2 Hearts is approximately 10/32 = 31.25%. Now let's compute the <u>exact</u> probability.

West and East have a total of 26 cards of which _____ are Hearts and _____ are not Hearts. Let's calculate the probability that your West opponent has exactly 3 Hearts.

The <u>total number of different hands</u> West could have is C(26, 13) = 10,400,600. The number of West hands with exactly 3 Hearts is C(5, 3)*C(21, 10) = 3,527,160. Probability = C(5, 3)*C(21, 10)/C(26, 13) = 3.9% [about 2.7% higher]

EXACT Probabilities versus "Pascal Triangle Estimates"

6A. If East and West have 5 Hearts, use the Table from page 2 to compute the estimated probability that they are split:

3-2 or 2-3: **<u>2*31% = 62%;</u>** 4-1 or 1-4: _____; 5-0 or 0-5: _____

6B. Use the 'combination method' [above] to compute these exact probabilities.:

3-2 or 2-3: **<u>2*33.9%</u> = 67.8%;** 4-1 or 1-4: _____; 5-0 or 0-5: _____;

NOTE: Most bridge players never <u>calculate</u> these approximate or exact probabilities. From teachers or books, they learn and memorize the probabilities of the most common distributions. For example, it is often sufficient to know that with 4 missing cards: *a 3-1 or 1-3 split is more likely than a 2-2 split.* <u>OR</u> With 5 missing cards: *a 3-2 or 2-3 split is much more than all other splits combined*.

An excellent reference is at https://www.lajollabridge.com/LJUnit/Education/Art_of_Being_Lucky.pdf