Power of a Point is a set of three-theorems-in-one about circles and line segments.

$P A * P B=P C$ PD

$P A * P B=P C$ PD

EXERCISES

1A. $P R=14$ and $P X<R X$, find $P X$.

1B. Find HK .

2. THEOREM: If A, B, C, and D are on a circle then for any point P in the circle, $P A * P B=P C$ * $P D$. Prove.
A. Draw AC and BD . Why does $\angle \mathrm{CAB}=\angle \mathrm{BDC}$?
B. Which two triangles are similar? Prove it.
C. Complete the proof that $\mathrm{PA} * \mathrm{~PB}=\mathrm{PC} * \mathrm{PD}$.
3. Often other theorems must be used along with Power of a Point. $P A=8 ; A B=10 ; C D=7 ; \angle P=60^{\circ}$.

Determine the area of the circle.
AHSME, 1992, \#27

1A.

$D P=2 ; P C=12 ; A P=2 P B ;$ find $A B$
2. $A B=B C$ and $A D=D E=E F$. Find $A B / A D$

1 C.

RFK is a right angle. Find RK.
$P Y=4 ; Y Z=8 ; W X=2 ;$ find $P W$

3A. Point P is exterior to circle O with radius r.
A line through P intersects the circle at A and B.
Determine PA*PB in terms of PO and r.
3B. Repeat if P is interior to circle O.

Reper
4.

Two circles intersect at points A and B. F is on line $A B$ such that $F P$ and $F Q$ are tangents to the circle. \quad PROVE: $F P=P Q$.

5A. Point P is exterior to a circle with $P A$ as a tangent. A line through P intersects the circle at points B and C.
PROVE: $\mathrm{PA}^{2}=\mathrm{PB}$ * PC

1. Draw segments $A B$ and $A C$. Why does $\angle \mathrm{ACP}=\angle \mathrm{BAP}$?
2. Which two triangles are similar? Why?
3. Complete the proof.

5B. A second line through P intersects the circle at points D and E. PROVE the Corollary:
$\mathbf{P B} * \mathbf{P C}=\mathbf{P D}$ * PE [Being a 'corollary' suggests that there is a very easy, short proof!]
6. PO is perpendicular to OB and PO equals the length of the

Diameter of circle O. Compute PA/AB.

7. A and B are points on a circle with center O. C lies outside the circle, on ray $\overrightarrow{\mathrm{AB}}$.

Given $A B=24, B C=28$, and $O A=15$, find $O C$.
Hint: The solution to a "recent" problem is helpful here.
8. Equilateral triangle $A B C$ is inscribed in a circle. Q is on segment $B C$. P is on line $A Q$ and on the circle.

PROVE: $\frac{1}{\mathrm{PQ}}=\frac{1}{\mathrm{~PB}}+\frac{1}{\mathrm{PC}}$
9. An equilateral triangle $A B C$ is inscribed in a circle. D and E are midpoints of $A B$ and $B C$ respectively. F is the point where ray $\overrightarrow{D E}$ intersects the circle. Compute $D E / E F$.
10. In the figure, $A B C D$ is a quadrilateral with right angles at A and C.

E and F are on AC such that DE and BF are perpendicular to AC .
If $\mathrm{AE}=3, \mathrm{DE}=5$, and $\mathrm{CE}=7$, compute BF .

ANSWERS with HINTS of solutions

EXERCISES

1A. $\quad X G * X H=X R * X P$ Let $x=P X$, then $X R=14-x ; 8^{*} 3=x(14-x) \rightarrow x^{2}-14 x+24=(x-12)(x-2)=0 . \quad X=2$ or 12
Since $P X<R X, P X=\underline{\mathbf{2}}$.
1B. $\quad \mathrm{FR}^{2}=\mathrm{FH} * \mathrm{FK}$, Let $\mathrm{HK}=\mathrm{x}$, then $\mathrm{FK}=\mathrm{x}+6 ; 8 * 8=6^{*}(\mathrm{x}+6) ; \mathrm{x}=\underline{14 / 3}$
1C. $\quad \mathrm{ZS} * \mathrm{ZU}=\mathrm{ZT} * \mathrm{ZV}$; Let $\mathrm{TV}=\mathrm{x}$, then $\mathrm{ZV}=7+\mathrm{x} . \quad 5$ * $17=7$ * $(7+\mathrm{x}) \quad \mathrm{x}=\underline{36 / 7}$
2A. Draw BC. Angle A and angle D each subtend the same chord BC.
2B. Since angle A is congruent to angle D and since the vertical angles at P are equal, by AA, \triangle PAC is similar to $\triangle P D B$

2C. Use ratios generated by these similar triangles: $\mathrm{PA} / \mathrm{PD}=\mathrm{PC} / \mathrm{PB}$ or $\mathrm{PA} * \mathrm{~PB}=\mathrm{PC} * \mathrm{PD}$.
3. $P A * P B=P C$ *PD. Let $C D=x$, then $P D=P C+C D=P C+7 ; 8 * 18=P C(P C+7)$. Solving: $\mathrm{PC}=9$.

Since $\angle P=60^{\circ}, P C=9$, and $\mathrm{PB}=18, \mathrm{PCB}$ is a $30-60-90$ triangle with right angle C .
Therefore, $B C=9 \sqrt{3}$. And $\angle \mathrm{BCD}$ is also a right angle.

So, $B D=\sqrt{81 * 3+49}=\sqrt{292}=2 \sqrt{73}$. Since $\angle B C D$ is a right angle, $B D$ is a diameter of the circle and it radius is $\sqrt{73}$. The area of the circle $=\pi r^{2}=\underline{73 \pi}$

PROBLEMS

1A. Let $\mathrm{PB}=\mathrm{x}$, then $\mathrm{AP}=2 \mathrm{x} . \mathrm{PA} * \mathrm{~PB}=\mathrm{PC} * \mathrm{PD}$ or $2 \mathrm{x} * \mathrm{x}=2 * 12 ; 2 \mathrm{x}^{2}=24 ; x=2 \sqrt{3} ; \mathrm{AB}=3 \mathrm{x}=\underline{\mathbf{2} \sqrt{\mathbf{3}}}$
1B. Let $P W=x$, then $P X=x+2 . P Y^{*} P Z=P W * P X . \quad 4^{*} 12=x(x+2) ; x^{2}+2 x-48=0=(x+8)(x-6) . P W=\underline{\boldsymbol{6}}$
1C. Let $H K=x . \quad R^{2}=F H^{*} F K . \quad 6^{2}=2(x+2) . X=16$ and $F K=18 . \quad R K=\sqrt{6^{2}+18^{2}}=\sqrt{360}=\underline{\mathbf{6} \sqrt{\mathbf{1 0}}}$
2. Let $x=A D=D E=E F ; y=A B=B C . A D * A F=A B * A C . \quad x * 3 x=y * 2 y ; 3 x^{2}=2 y^{2} ; A B / A D=y / x=\sqrt{3 / 2}$ or $\sqrt{6} / 2$

3A. Let radius $=r$, then $P C=P O-r$; and $P D=P O+r ; P A * P B=P C * P D=(P O-r)(P O+r)=P O^{2}-r^{2}$
3B. A similar solution yields: $\mathrm{PA} * \mathrm{~PB}=\mathbf{r}^{\mathbf{2}} \mathbf{-} \mathbf{P O}^{\mathbf{2}}$
4. $\quad F P^{2}=F A * F B$ but $F Q^{2}$ also equals $F A * F B$; hence, $F P=F Q$.

5A. 1. See diagram. For a tangent PA and chord AB, the Alternate Segment Theorem states that for any point C on 'alternate' side of circle, $\angle \mathrm{PAB}=\angle \mathrm{ACB}$
2. Triangles APB and CPA by the AA theorem for similar triangles.
3. Use ratios generated by these similar triangles.

5B. By Power of Point, $P A^{2}=P B * P C$ and $P A^{2}=P D * P E ;$ hence, $P B * P C=P D * P E$
6. By Pythagorean Theorem, $\mathrm{PB}=\mathrm{r} \sqrt{5}$. $\mathrm{PC} * \mathrm{PD}=\mathrm{PA} * \mathrm{~PB} .3 \mathrm{r}^{*} \mathrm{r}=\mathrm{PA} * \mathrm{r} \sqrt{5}$
$\mathrm{PA}=\frac{3 r}{\sqrt{5}}=\frac{3 r \sqrt{5}}{5} ; \quad \mathrm{AB}=\mathrm{PB}-\mathrm{PA}=\mathrm{PA} / \mathrm{AB}=\mathrm{r} \sqrt{5}-\frac{3 r \sqrt{5}}{5}=\frac{2 r \sqrt{5}}{5}$

$\mathrm{PA} / \mathrm{AB}=\frac{3 r \sqrt{5}}{5} / \frac{2 r \sqrt{5}}{5}=\mathbf{3 / 2}$.
7. From 3 A , above, $\mathrm{CB} * \mathrm{CA}=\mathrm{CO}^{2}-\mathrm{r}^{2}, 28 * 52=\mathrm{OC}^{2}-15^{2}$

$$
O C^{2}=1456+225=1681 ; \quad O C=\underline{41}
$$

8. Since no dimensions are given, W LOG let $A B=B C=A C=1$. Let $C Q=d, B Q=1-d, P B=x$, and $P C=y$.

We must show that: $\frac{\mathbf{1}}{\mathbf{P Q}}=\frac{\mathbf{1}}{\mathbf{x}}+\frac{\mathbf{1}}{\mathbf{y}}$. Via Similar triangles, we will "hunt for" $1 / \mathrm{x}$ and $1 / \mathrm{y}$.
Angles BAP and BCP are congruent -- each subtends BP. With angle Q shared,

$$
\Delta A Q B \cong \Delta C Q P . \quad A B / C P=B Q / P Q ; 1 / y=(1-d) / P Q .
$$

Similarly, angles $P B C$ and $P A C$ are congruent and $\triangle A C Q \cong \triangle B P Q$.
$\mathrm{AC} / \mathrm{BP}=\mathrm{CQ} / \mathrm{PQ} ; 1 / \mathrm{x}=\mathrm{d} / \mathrm{PQ}$. Therefore, $\frac{1}{P B}+\frac{1}{P C}=\frac{1}{\mathrm{x}}+\frac{1}{\mathrm{y}}=\frac{d}{P Q}+\frac{1-d}{P Q}=\frac{1}{P Q} \quad \mathrm{QED}$

9. WLOG, let $\mathrm{AB}=\mathrm{BC}=\mathrm{CA}=2$, then $\mathrm{AD}=\mathrm{DE}=\mathrm{EA}=1$. Let $\mathrm{EF}=\mathrm{x}=\mathrm{DG}$.

Using Power of Point on $\mathrm{E}: \mathrm{EA} * \mathrm{EC}=\mathrm{EG} * \mathrm{EF}$ or $1^{*} 1=(\mathrm{x}+1)$ * x .
So: $x^{2}+x-1=0$. By quadratic formula, $x=(-1+\sqrt{5}) / 2$.
$D E / E F=1 / x==(1+\sqrt{5}) / 2$, the Golden Ratio.
10. AHSME, 1990, \#20 Since A and C are right angles, they are each on the circle with diameter BD. Therefore, A, B, C, and D are cyclic and Power of Point can be applied. Extend $D E$ to X on the circle. Since X is on the circle with $B D$ diameter, $B D X$ is a right triangle and DXB is a right angle. Thus BFEX is a rectangle with BF = EX. Apply Power of Point to E .
$\mathrm{EX} * \mathrm{ED}=\mathrm{EA} * \mathrm{EC} \quad \mathrm{BF}=\mathrm{EX}=3 * 7 / 5=\underline{\mathbf{2 1} / 5}$.

