Fantastic Factoring

Following are some factoring patterns that you might already recognize. x and y can both represent variables in the expressions, or y might be a constant. These rules work for all real numbers x and y. Sometimes you are given the factored form and recognizing the pattern will save you time and errors in not multiplying out all of the terms.

Difference of Squares

$$
x^{2}-y^{2}=(x-y)(x+y)
$$

Binomial Squares

$$
\begin{aligned}
& x^{2}-2 x y+y^{2}=(x-y)(x-y) \\
& x^{2}+2 x y+y^{2}=(x+y)(x+y)
\end{aligned}
$$

Difference of Cubes

$x^{3}-y^{3}=(x-y)\left(x^{2}+x y+y^{2}\right)$
Sum of Cubes

$$
x^{3}+y^{3}=(x+y)\left(x^{2}-x y+y^{2}\right)
$$

Factor the following expressions.

1. $64 a^{4}-100 b^{4}$
2. $27 m^{3}+8$
3. $4 b^{2}-36 b c+81 c^{2}$

By looking at the sum and difference of cubes above, how do you think the general difference and sum below would be factored?
$x^{n}-y^{n}=$
For all odd $n, x^{n}+y^{n}=$
Why does the sum only work for odd n ?

Often an expression is not a binomial or trinomial and has 4 or more terms. We use different methods to factor these. For example, let's use factoring by grouping to simplify and solve.
4. $4 a b-8 b^{2}+3 a^{3}-6 a^{2} b$
5. $x y+y+x+1=0$

The entire purpose of factoring a polynomial is to help in simplifying and solving polynomial equations. Most problems you have probably seen have set the equation equal to 0 to solve; however, if looking for integer solutions, this doesn't always have to be the case.
6. If x is a positive integer and $x(x+1)(x+2)(x+3)+1=379^{2}$, compute x.

What if factoring by grouping doesn't work? Simon's Favorite Factoring Trick to the Rescue! SFFT allows you to think about the problem algebraically or visually by completing the rectangle.

Example: Given that j and k are integers and $j^{2}+5 j^{2} k^{2}-20 k^{2}=109$, find $5 j^{2} k^{2}$.
7. Both p and q are positive integers where $p>q$. Find all ordered pairs (p, q) such that $2 p q+2 p-3 q=18$.
8. Twice the area of a non-square rectangle equals triple its perimeter. If the dimensions are both positive integers, what is the rectangle's area?
9. Compute all integer values of $n, 90 \leq n \leq 100$, that can not be written in the form $n=a+b+a b$, where a and b are positive integers.
10. Compute the positive integer x such that $4 x^{3}-41 x^{2}+10 x=1989$.
11. If $x^{5}+5 x^{4}+10 x^{3}+10 x^{2}-5 x+1=10$ and $x \neq-1$, compute the numerical value of $(x+1)^{4}$.
12. Let A, M, and C be nonnegative integers such that $A+M+C=12$. What is the maximum value of $A \cdot M \cdot C+A \cdot M+M \cdot C+C \cdot A$? (Hint: Look back at question \#5 and its solution.)
13. Find the number of ordered pairs of integers (m, n) for which $m n \geq 0$ and $m^{3}+n^{3}+99 m n=33^{3}$ is true.
14. Let us examine the expression $a^{3}+b^{3}$, where $a>b$. One well-known result is that $a^{3}+b^{3}=c^{3}$ has no solution in positive integers. For each of the equations below, either:

1. Prove that no solutions can exist OR
2. Show how an infinite number of solutions can be generated.
A. $a^{3}+b^{3}=c^{2}$
B. $a^{3}+b^{3}=c \cdot d \cdot e$, where c, d, and e are in geometric progression
C. $a^{3}+b^{3}=c \cdot d \cdot e$, where c, d, and e are in arithmetic progression
D. $a^{3}+b^{3}=3 p$, where p is a prime greater than 3

Solutions to Fantastic Factoring

1. $4\left(4 a^{2}-5 b^{2}\right)\left(4 a^{2}+5 b^{2}\right)$
2. $(3 m+2)\left(9 m^{2}-6 m+4\right)$
3. $(2 b-9 c)^{2}$
4. $(a-2 b)\left(4 b+3 a^{2}\right)$
5. $x=-1$ or $y=-1$
6. 18 (1989 ARML, Individual \#1)
7. $(4,2)$
8. 48
9. 96 and 100 (1990 ARML, Team \#7)
10.13 (1989 NYSML, Individual \#2)
11.10 (1994 ARML, Team \#1)
12.112 (2000 AMC, \#12)
13.35 (1999 AHSME, \#30)
14.A. Infinite number of solutions
B. No solutions
C. Infinite number of solutions
D. No solutions
(1990 ARML PQ Part I)

Team Round Answers

1. 6481 (1992 NYSML, Team \#5)
2. 186 (mathleague.org 11207, Large Team \#4)
3. 2013 (mathleague.org 11607, Team \#2)
4. 6 (mathleague.org 11301, Sprint \#10)
5. $\pm 3 i$ (1991 NYSML, Individual \#2)
6. 1600 (mathleague.org 11202, Large Team \#7)
7. -61 (AHSME 1966, \#30)
8. -403 (mathleague.org 11607, Target \#6)
9. 4 (mathleague.org 11308, Sprint \#28)
10. 96 (mathleague.org 11307, Sprint \#11)

Team Round

30 minutes - 10 questions - maximum of 6 team members There is no penalty for guessing.

1. The number $\left(9^{6}+1\right)$ is the product of three primes. Compute the largest of these primes.
2. Of the integers between 1 and 2310 , how many are divisible by exactly three of the five primes $2,3,5,7$, and 11 ?
3. If x and y are positive integers such that $x^{2}=y^{2}+61$, find $x(x+2)+y(y+3)$.
4. The graph of $x y+3 x+2 y=0$ can be produced by translating the graph of $y=\frac{k}{x}$ to the left and down for some constant value k. Find k.
5. Let $f(x)=x^{2}+b x+9$ and $g(x)=x^{2}+d x+e$. If $f(x)=0$ has roots r and s, and $g(x)=0$ has roots $-r$ and $-s$, compute the two roots of $f(x)+g(x)=0$.
6. How many ordered pairs of integers (x, y) with $1 \leq x \leq 100$ and $1 \leq y \leq 100$ make the quantity $x y-x-y$ a multiple of 5 ?
7. If three of the roots of $x^{4}+a x^{2}+b x+c=0$ are 1,2 , and 3 , find the value of $a+c$.
8. x and y are real numbers that satisfy the equations $x-y=1$ and $x^{5}-y^{5}=2016$. Find $\frac{x^{5}+y^{5}}{x+y}-\left(x^{4}+y^{4}\right)$.
9. How many ordered pairs of positive integers (a, b) are there such that $\frac{1}{a}-\frac{1}{b}=\frac{1}{143}$?
10. Suppose that a, b, c, d are real numbers such that $a b+3 a+3 b=216, b c+3 b+3 c=96, c d+3 c+3 d=40$. Find the maximum possible value of $a d+3 a+3 d$.
