MO-ARML --- January, 2019 -- GEOMETRY OF COMPLEX NUMBERS

Many Complex Number problems are most easily solved geometrically on the complex Argand Plane.
GOAL: Treat these as 10 -second Mental Arithmetic (or geometry) problems: Simplify $\left(\frac{1+i \sqrt{3}}{2}\right)^{3}$ and $(\mathbf{1}+i)^{6}$ First, the BASICS

1. Solve: $x^{2}=25, x=$ \qquad ; $x^{2}=7, x=$ \qquad ; $x^{2}=-9, x=$ \qquad ; $x^{2}+x+1=0 ; x=$ \qquad

DEFINITIONS Define: $\boldsymbol{i}=\sqrt{-1}$ and $\boldsymbol{i}^{2}=\mathbf{- 1}$. If a and b are Real numbers, then $\mathbf{z}=\mathbf{a}+\mathbf{b i}$ is a Complex Number in rectangular form. The modulus or absolute value of z or length of vector z is: $|\boldsymbol{z}|=\boldsymbol{r}=\sqrt{\boldsymbol{a}^{2}+\boldsymbol{b}^{\mathbf{2}}}$
2. Simplify: $(7-6 i)+(5+i) ; \quad(-8+i)-(-3+4 i) ; \quad(7-6 i)(5+i) ; \quad(5+5 i)^{2} ; \quad \frac{5-2 i}{4+5 i}$
3. If $\mathbf{z}=\mathbf{a}+\mathbf{b i}$, then the conjugate of z is $\overline{\mathbf{z}}=\mathbf{a} \mathbf{- b i}$.

Theorems: $\mathbf{Z} \cdot \overline{\mathbf{Z}}=$ \qquad $=$ \qquad $=$ \qquad and $\frac{\mathbf{z}}{\overline{\mathbf{Z}}}=$

Argand Diagram Any Real Number can be represented as a point on a Real Number Line [one-dimensional]. Any Complex Number can be represented as a point on the Complex Plane [two-dimensional].

$$
\begin{aligned}
& \mathrm{z}=\mathbf{a}+\mathbf{b i} \quad \text { rectangular form } \\
& \mathrm{z}=\mathbf{r} \cos \theta+\boldsymbol{i} \sin \theta \text { trig or polar form } \\
& \mathrm{z}=\mathbf{r}(\cos \theta+\boldsymbol{i} \sin \theta)=\mathbf{r} \operatorname{cis} \theta \text { 'engineer' form } \\
& \mathbf{z}=\mathbf{r} \mathbf{e}^{\boldsymbol{i} \theta} \quad \text { Euler's form }
\end{aligned}
$$

4. Write each complex number in both rectangular and Euler form.
A.

B.

Hints:

A.
$Z_{1}=$ \qquad $=$ \qquad
B. $\quad Z_{2}=$ \qquad $=$ \qquad

ANGLE MEASURE IN RADIANS All calculations of complex numbers in polar or Euler forms are done in RADIANS.
5. Label these "special angles" in Radian Measure (the is, in terms of π). On a Unit Circle, arc-length =angle.

Calculations in Euler Form "Just follow the rules of Real Number Algebra!" [eg: $\quad\left(3 x^{5}\right)\left(7 x^{4}\right)=$ \qquad]

Multiplication: $z_{1} * z_{2}=r_{1} e^{i \theta_{1}} * r_{2} e^{i \theta_{2}}=\quad$ Division: $\frac{z_{1}}{z_{2}}=\frac{r_{1} e^{i \theta_{1}}}{r_{2} e^{i \theta_{2}}}=$ \qquad
Translate:
Exponentiation: $z^{n}=\left(r e^{i \theta}\right)^{n}=$ \qquad Square root: $\quad \sqrt{\boldsymbol{z}}=\sqrt{\left(r e^{i \theta}\right)}=$ \qquad Translate:
6. Using the given complex numbers, DRAW and label each of these complex numbers. These are NOT Special Angles.

B. If \mathbf{z}_{4} does equal $e^{i 3 \pi / 4}$, then an "unusual" observation from \mathbf{y} is that: $\mathbf{Z}_{\mathbf{4}}{ }^{\mathbf{3}}=\mathbf{Z}_{\mathbf{4}}$?

PROBLEM SET

1A. On an Argand plane, locate the complex number \boldsymbol{i}. Use the GEOMETRY to compute:

$$
i^{0}=\ldots ; i^{1}=\ldots ; i^{2}=\ldots ; \quad i^{3}=\ldots ; i^{4}=\ldots ; \ldots . . . \quad i^{40}=\ldots ; \quad . . . \quad i^{59}=\ldots \text {; }
$$

1B. Using the above pattern, compute:
$i^{13}+i^{32}-i^{35}-i^{50}=; \quad i^{1}+i^{2}+i^{3}+i^{4}+i^{5}+i^{6}+\ldots+i^{49}+i^{50}=;$

2. If $z=a+b i=r e^{i \theta}$,
then $\bar{z}=\mathrm{a}-\mathrm{bi}=$ \qquad (Euler)
and $\mathrm{z}^{-1}=$ \qquad (Euler)

2A. For each z, DRAW \bar{z} and z^{-1}
$2 B$. Describe all z such that $\bar{z}=z^{-1}$

THEOREM: $\bar{z}=\mathrm{z}^{-1}$ if and only if \qquad ?
3. 1957 AMC 12, \#42 If $S=i^{n}+i^{-n}$ and n is an integer, what is the total number of distinct values for S ?
4. 1964 AMC 12 , \#34. If n is a multiple of 4 , compute the sum: $1+2 i+3 i^{2}+4 i^{4}+5 i^{5}+\cdots+(n+1) i^{n}$.
5. Use the geometry and/or Euler form to simplify:

$$
\left(\frac{1+i \sqrt{3}}{2}\right)^{3}=\quad(1+i)^{6}=
$$

6. 1965 AMC 12, \#11. How many and which of these three expressions are incorrect?
$\sqrt{-4} * \sqrt{-16}=\sqrt{(-4)(-16)} \quad \sqrt{(-4)(-16)}=\sqrt{64} \quad \sqrt{64}=8$
7. Compute: $\left(\frac{1+i \sqrt{3}}{2}\right)^{60}+\left(\frac{1-i \sqrt{3}}{2}\right)^{60}-\frac{(1+i)^{5}}{(1-i)^{3}} \quad$ 8. Simplify: $\left(\frac{4}{i \sqrt{3}-1}\right)^{12}$
8. 1972 AMC 12, \#3 If $\mathrm{x}=\frac{1-i \sqrt{3}}{2}$, compute $\frac{1}{x^{2}-x}$.
[Try both algebraically and geometrically.]
9. 2004 MA日. If $f(z)=z^{2}+4 i z-4$ and $g(z)=\bar{z}$, what is the value of $f(g(3+2 i))$?

Hint: Look for short-cuts.
11. $2004 \mathrm{MA} \mathrm{\theta}$. If a, b, and $(a+b i)^{3}$ are non-zero real numbers, compute $\left|\frac{b}{a}\right|$.
12. 1985 AMC 12, \#23 If $x=\frac{-1+i \sqrt{3}}{2}$ and $y=\frac{-1-i \sqrt{3}}{2}$, which of the following are incorrect?

$$
x^{5}+y^{5}=-1 ; \quad x^{7}+y^{7}=-1 ; \quad x^{9}+y^{9}=-1 ; \quad x^{11}+y^{11}=-1 ; \quad x^{13}+y^{13}=-1^{\prime}
$$

13. 2008 AIME II, \#9 A particle is located on the coordinate plans at (5,0). Define a move for the particle as a counterclockwise rotation of $\pi / 4$ radians about the origin followed by a translation of 10 units in the positive x direction. After 150 moves, the particle's position is (p, q).

Determine the greatest integer less than or equal to $|p|+|q|$.

EXERCISE ANSWERS

1. Solve: $x^{2}=25, x=5$ OR $-5 ; x^{2}=7, x= \pm \sqrt{7} ; x^{2}=-9, x= \pm 3 i ; x^{2}+x+1=0 ; x=\frac{-1 \pm i \sqrt{3}}{2}$
2. Simplify: $(7-6 i)+(5+i) ; \quad(-8+i)-(-3+4 i)$;

$$
(7-6 i)(5+i) ; \quad(5+5 i)^{2} ; \quad \frac{5-2 i}{4+5 i} * \frac{4-5 i}{4-5 i}
$$

$$
\begin{array}{ccccc}
12-5 i & -5-3 i & 41-23 i & -10 i & \frac{10-33 i}{41}
\end{array}
$$

3. Theorems: $\mathrm{z} \cdot \overline{\mathrm{z}}=\mathrm{a}^{2}+\mathrm{b}^{\mathbf{2}}=\mathrm{r}^{2}=|\mathrm{z}|^{2}$ and $\frac{\mathrm{z}}{\overline{\mathrm{z}}}=\frac{\mathrm{z}}{\overline{\mathrm{z}}} * \frac{\mathrm{z}}{\mathrm{z}}=\frac{\mathrm{z}^{2}}{|\mathrm{z}|^{2}}$ and later $=\frac{r^{2} e^{i 2 \theta}}{r^{2}}=e^{i 2 \theta}$

4A. $\quad Z_{1}=\sqrt{3}+i=2 e^{i \pi / 6}$
B. $\quad Z_{2}=(-3,3)=3 \sqrt{2} e^{i 3 \pi / 4}$

Calculations in Euler Form

Multiplication: $z_{1} * z_{2}=r_{1} e^{i \theta_{1}} * r_{2} e^{i \theta_{2}}=r_{1} r_{2} e^{i\left(\theta_{1}+\theta_{2}\right)} \quad$ Multiply the $r^{\prime} s ;$ add the angles
Division: $\frac{z_{1}}{z_{2}}=\frac{r_{1} e^{i \theta_{1}}}{r_{2} e^{i \theta_{2}}}=\frac{r_{1}}{r_{2}} e^{i\left(\theta_{1}-\theta_{2}\right)} \quad$ Divide the r 's; subtract the angles
Exponentiation: $z^{n}=\left(r e^{i \theta}\right)^{n}=r^{n} e^{i n \theta} \quad r^{n}$, then multiply the exponents
Square root: $\sqrt{\boldsymbol{z}}=\sqrt{\left(r \boldsymbol{e}^{\boldsymbol{i \theta} \theta}\right)}=\sqrt{r} e^{i \boldsymbol{\theta} / 2} \quad$ Same as exponentiation
6. $u=z_{1} z_{3} \quad v=z_{1} / z_{2} \quad w=z_{2}^{2} \quad x=\sqrt{z_{1}} \quad y=z_{4}{ }^{3}$

Challenge:
B. If z_{4} does equal $e^{i 3 \pi / 4}$, then an "unusual" observation is that: $\mathbf{z}_{4}{ }^{\mathbf{3}}=\mathbf{y}=\sqrt[3]{\mathbf{z}_{\mathbf{4}}}=\mathbf{z}_{\mathbf{4}}{ }^{\mathbf{1 / 3}}$

1A. 1; $\boldsymbol{i} ;-\mathbf{1} ; \mathbf{- i} ; 1 ; i ;-1 ;-i ; \quad$ ETC, a sequence of length 4 $i^{40}=i^{0}=1 ; \quad i^{59}=i^{3}=-i$

1B. Using the above pattern, compute:

$$
i^{13}+i^{32}-i^{35}-i^{50}=i+1+i+1=\mathbf{2}+\mathbf{2 i}
$$

$$
i^{1}+i^{2}+i^{3}+i^{4}+i^{5}+i^{6}+\ldots .+i^{49}+i^{50}=i^{49}+i^{50}=i^{1}+i^{2}=-1+i \quad \text { because } \quad i^{1}+i^{2}+i^{3}+i^{4}=i-1-i+1=0
$$

$$
i^{1} * i^{2} * i^{3} * i^{4} * i^{5} * i^{6} * \ldots * i^{49} * i^{50}=i^{1+2+3 \ldots+50}=i^{50 * 51 / 2}=i^{1275}=i^{3}=-\mathbf{1}
$$

2. If $z=a+b i=r e^{i \theta}$, then $\bar{Z}=a-b i=r e^{-\theta i}$ and $z^{-1}=\left(r e^{\theta i}\right)^{-1}=\frac{1}{r} e^{-\theta i}$

Note that $\overline{\mathbf{z}}$ and $\mathbf{z}^{\mathbf{- 1}}$ always have the same angle, $\boldsymbol{- \theta}$
2A. For each z, DRAW \bar{z} and z^{-1}
2B. THEOREM: $\bar{z}=z^{-1}$ if and only if $|z|=r=1$
3. 3 If $S=i^{n}+i^{-n}$ and n is an integer, what is the total number of distinct values for S ?

Testing $n=0, \ldots 3, S$ can equal only $-2,0$, or 2 for three possibilities.
4. ($\mathbf{2}+\mathbf{n}-\mathbf{n} \mathbf{i}) / \mathbf{2}$ (or equivalent) If n is a multiple of 4 , compute:

$$
1+2 i+3 i^{2}+4 i^{4}+5 i^{5}+\cdots+(n+1) i^{n}
$$

Since n is a multiple of 4 and there are $n+1$ terms, I will treat the first term
" 1 " as the 'extra' term.
$\mathrm{S}=1+[-3+5-7+9-11 \ldots-(\mathrm{n}-1)+(\mathrm{n}+1)]+i[2-4+6-8+\ldots+(\mathrm{n}-2)-\mathrm{n}]$
In each bracket, there are exactly $\mathrm{n} / 4$ pairs of terms, each pair summing to 2 or -2 .
$=1+2^{*} \mathrm{n} / 4+i^{*}(-2)^{*} \mathrm{n} / 4=\mathbf{1}+\mathbf{n} / \mathbf{2}-\boldsymbol{i n} / \mathbf{2}=(\mathbf{2}+\mathbf{n}-\mathrm{ni}) / \mathbf{2}$
5A. Note the 30-60-90 triangle.
Multiply the angle $\left(60^{\circ}\right)$ by 3 . Since $r=1$, the modulus stays the same.
OR $z^{3}=\left(\frac{1+i \sqrt{3}}{2}\right)^{3}=\left(e^{i \pi / 3}\right)^{3}=e^{i \pi}=-\boldsymbol{i}$
B. Note the 45-45-90 triangle with hypotenuse $\sqrt{2}$.

Multiply the angle by 6 and raise r to $6^{\text {th }}$ power.

$$
(1+i)^{6}=\left(\sqrt{2} e^{i \pi / 4}\right)^{6}=-\mathbf{8 i}
$$

6. $\sqrt{-4} * \sqrt{-16}=\sqrt{(-4)(-16)} ; \sqrt{(-4)(-16)}=\sqrt{64} ; \quad \sqrt{64}=8$

Only the first expression is incorrect. $\sqrt{-4} * \sqrt{-16}=2 i * 4 i=-8$, not 8 . NOTE: This means that $\sqrt{x} * \sqrt{y}=\sqrt{x y}$ is NOT a property over the Complex numbers.

7. $0\left(\frac{1+i \sqrt{3}}{2}\right)^{60}+\left(\frac{1-i \sqrt{3}}{2}\right)^{60}-\frac{(1+i)^{5}}{(1-i)^{3}}=\left(e^{i \pi / 3}\right)^{60}+\left(e^{-i \pi / 3}\right)^{60}-\frac{\left(\sqrt{2} e^{i \pi / 4}\right)^{5}}{\left(\sqrt{2} e^{-i \pi / 4}\right)^{3}}=$
$1+1-\frac{\sqrt{2}^{5} e^{i 5 \pi / 4}}{\sqrt{2}^{3} e^{-i 3 \pi / 4}}=2-\sqrt{2}^{2} e^{8 \pi / 4}=2-2=\mathbf{0}$
8. $\left(\frac{4}{i \sqrt{3}-1} * \frac{1}{i \sqrt{3}+1}\right)^{12}=\left(\frac{4}{i \sqrt{3}-1} * \frac{i \sqrt{3}+1}{i \sqrt{3}+1}\right)^{12}=\left(\frac{4(i \sqrt{3}+1)}{-4}\right)^{12}=2^{12}\left(\frac{(i \sqrt{3}+1)}{2}\right)^{12}=2^{12}\left(e^{i \pi / 3}\right)^{12}=4098$
9. - 1 If $\mathrm{x}=\frac{1-i \sqrt{3}}{2}=e^{-i \pi / 3} ; \frac{1}{x^{2}-x}=\frac{1}{e^{-i 2 \pi / 3}-e^{-i \pi / 3}}$

Geometry: $e^{-i 2 \pi / 3}-e^{-i \pi / 3}=-1$; then $\frac{1}{e^{-i 2 \pi / 3}-e^{-i \pi / 3}}=\frac{1}{-1}=\mathbf{- 1}$

Algebra: $x=\frac{1-i \sqrt{3}}{2} ; x-1=\frac{-1-i \sqrt{3}}{2} ; \frac{1}{x^{2}-x}=\frac{1}{x(x-1)}=\frac{1}{\frac{1-i \sqrt{3}}{2} *-\frac{1+i \sqrt{3}}{2}}=\frac{-4}{4}=\mathbf{- 1}$

10. 9 If $f(z)=z^{2}+4 i z-4$ and $g(z)=\bar{z}$, what is the value of $f(g(3+2 i))$?

$$
f(z)=z^{2}+4 i z-4=(z+2 i)^{2} ; \quad f(g(3+2 i))=f(3-2 i)=(3-2 i+2 i)^{2}=3^{2}=9
$$

11. $\sqrt{3}$ If a, b, and $(\mathrm{a}+\mathrm{bi})^{3}$ are real numbers, compute $\left|\frac{\mathrm{b}}{\mathrm{a}}\right|$. Let $\mathrm{z}=\mathrm{a}+\mathrm{bi}=r e^{i \theta} \cdot \mathrm{z}^{3}$ is a real number only if $\theta=\pi / 3+n \pi$ or $\theta=2 \pi / 3+n \pi$ for integral n. For all such values: $a= \pm 1 / 2$ and $b= \pm \sqrt{3} / 2\left|\frac{b}{a}\right|=\sqrt{3}$
12. $\mathbf{x}^{9}+\mathbf{y}^{9}=\mathbf{- 1} \quad$ If $x=\frac{-1+i \sqrt{3}}{2}$ and $y=\frac{-1-i \sqrt{3}}{2}$, which of the following are incorrect?

$$
\begin{gathered}
\mathbf{x}^{5}+\mathbf{y}^{5}=-\mathbf{1} ; \quad \mathbf{x}^{7}+\mathbf{y}^{7}=-\mathbf{1} ; \quad \mathbf{x}^{9}+\mathbf{y}^{9}=-\mathbf{1} ; \quad \mathbf{x}^{11}+\mathbf{y}^{11}=-\mathbf{1} ; \quad \mathbf{x}^{13}+\mathbf{y}^{13}=-\mathbf{1} \\
x=\frac{-1+i \sqrt{3}}{2}=e^{-i \pi / 3} \quad \text { and } \quad y=\frac{-1-i \sqrt{3}}{2}=e^{i 2 \pi / 3} \\
x^{9}+y^{9}=\left(e^{-i \pi / 3}\right)^{9}+\left(e^{i 2 \pi / 3}\right)^{9}=1+1=2 \neq-1 \quad \text { All others do equal }-1 .
\end{gathered}
$$

13. 19 A particle is located on the coordinate plans at (5,0). Define a move for the particle as a counterclockwise rotation of $\pi / 4$ radians about the origin followed by a translation of 10 units in the positive x direction. After 150 moves, the particle's position is (p, q). Determine the greatest integer less than or equal to $|p|+|q|$.
Let $a=e^{\pi / 4}$ so that multiplication by a is a rotation of $\pi / 4$ radians clockwise about the origin. Also, $a^{8}=a^{16}=a^{24}=\ldots=1$

- After 1 move: $\mathbf{5 a + 1 0 ;}$ after 2 moves: $a(5 a+10)+\mathbf{1 0 ;}$
- After 3 moves: $\mathbf{a}(\mathbf{a}(\mathbf{5 a} \mathbf{+ 1 0})+\mathbf{1 0})+\mathbf{1 0}$; After 150 moves:
- $a(\ldots a(a(5 a+10)+10)+10 \ldots+10)+10=5 a^{150}+10 a^{149}+10 a^{148}+\ldots+10 a+10$
$-\quad=5 a^{6}+10\left(a^{149}+a^{148}+\ldots+a+1\right)$.
- There are 150 terms within the parentheses. Each sequence of 8 terms equals 0 [see diagram]. So the first 144 terms "zero out". Also, "opposites" $a^{5}+a=0$ and $a^{4}+1=0$.

$-\quad=-5 \sqrt{2}+[5+5 \sqrt{2}] i=p+q i$. So $|p|+|q|=|-5 \sqrt{2}|+|5+5 \sqrt{2}|>7+5+7=19$
Note: This motion creates an octagon!

