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Euclid wrote the book on geometry 2300 years ago (“Elements,” still available from Dover Books) but he

was also interested in arithmetic. Even if he himself did not invent the math, he gets the credit for writing

it down.

Fibonacci, or Leonardo of Pisa, wrote the book on arithmetic 900 years ago (“Liber Abaci,” still available

from Springer Verlag) that convinced everyone in medieval Europe to use Hindu/Arabic numbers. He did

not invent the system but we should give him credit for sparing us from having to learn how to multiply and

divide Roman numerals.

These two men are perhaps best known for “Euclid’s algorithm” and “Fibonacci numbers,” respectively.

These monuments to their intellects are related in a curious way which we will now explore.

1. When working with fractions, it is easiest to put them in lowest terms and use common denominators.

• Put 3/9 and 15/25 into lowest terms.

• What is a common denominator in the sum 1
6 + 1

4? What is the answer in lowest terms?

2. To get lowest terms requires finding common divisors in the numerator and denominator.

• What are the common divisors of 3 and 9? 4 and 6? 15 and 25?

• What are the common divisors of 12 and 30?

• This works for more than two numbers. What is a common divisor of 12, 16, and 30?

3. The greatest common divisor of two numbers is the largest number that divides both of them. If

the numbers are the numerator and denominator of a fraction, the greatest common divisor must be

factored out of both to get lowest terms.

• What is the greatest common divisor of 12 and 30? What is 12/30 in lowest terms?

• What is the greatest common divisor of 768 and 512? What is 512/768 in lowest terms?
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4. What is the greatest common divisor of 299792458 and 0? The principle here is that every number d

is a divisor of 0 since we may write 0 = d× 0.

5. What is the greatest common divisor of 6022140923 and 6022140923? What is the principle here?

6. When the numbers are large, positive, and unequal, it may take many trial divisions to find common

divisors. In Euclid’s “Elements” it is noted that any common divisor of numbers a and b is also a

common divisor of b and a − b. Prove this by supposing that d is a common divisor, a = a0d and

b = b0d for numbers a0, b0, then writing a− b as a multiple of d.

7. Now suppose that a > b > 0 are (large) numbers. Try to prove, using properties of “>,” that

a > a− b > 0. Then note that any common divisor of a and b is also a common divisor of the smaller

numbers b and a− b.

8. Euclid’s idea may be applied recursively (more than once, on each new result). Given a > b > 0, let

a1 = max(b, a− b) and let b1 = min(b, a− b). Try to prove that a1 ≥ b1 > 0. Then note that if a1 > b1,

the process may be repeated with a1 and b1 replacing a and b.

Otherwise, if a1 = b1, then their greatest common divisor is a1, which is therefore the greatest common

divisor of a and b.

(This recursive proceedure is the original Euclidean algorithm of 2300 years ago.)

9. Using the Euclidean algorithm, find the greatest common divisor of 768 and 512. Hint: no trial division

is needed.
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10. A more modern version of Euclid’s algorithm uses the division principle:

For any numbers a and b with b > 0, there are unique numbers q and r (the “quotient” and

“remainder,” respectively) such that a = qb + r and 0 ≤ r < b.

• Find q and r for a = 30 and b = 12.

• Prove that if d is a divisor of a and b, and a = qb + r, then d is a divisor of r.

11. The modern Euclidean algorithm is to replace a, b with a1 = b and b1 = r, where a = qb + r from the

division principle. The greater efficiency comes from the greater reduction in number size per step.

a > b > 0 results in a > b = a1 > r = b1 ≥ 0.

If b1 = 0, then the greatest common divisor is a1.

Otherwise, division is repeated on a1, b1.

• Use this division version of Euclid’s algorithm to find the greatest common divisor of a = 36 and

b = 8. How many steps are required?

• Use the original Euclidean algorithm (just subtraction) to find the greatest common divisor of

a = 36 and b = 8. How many steps are required?

12. Suppose we use the modern version and keep track of the quotients and remainders. Start with

a > b > 0 and define a sequence of remainders {r0, r1, . . .} and a sequence of quotients {q1, q2, . . .} as

follows:

r0 = a

r1 = b

rn+1 = rn−1 − qnrn, for n = 1, 2, . . .,
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where qn is defined to be the unique whole-number quotient rn−1/rn, and rn+1 is the remainder, in

the division formula

rn−1 = qnrn + rn+1.

For example, starting with r0 = a = 36 and r1 = b = 8 gives this table:

n rn qn
0 36
1 8 4
2 4 2
3 0

Since r3 = 0 it is impossible to find q3. The greatest common divisor of 36 and 8 is then found at

r2 = 4.

Fill out this similar table to find the greatest common divisor of 60 and 45:

n rn qn
0 60
1 45
2
3

13. Notice that any common divisor d of both a and b is also a divisor of sa + tb, where s, t are any whole

numbers. That becomes clear if we write a = a0d and b = b0d and expand (using the associative and

distributive axioms of arithmetic):

sa + tb = s(a0d) + t(b0d) = (sa0)d + (tb0)d = (sa0 + tb0)d,

which is evidently a multiple of d. This is true for the greatest common divisor d, so every number in

this set is a multiple of the greatest common divisor of a and b:

I(a, b) = {sa + tb : s, t any integers, positive, negative, or zero.}

The smallest positive number in I(a, b) is in fact the greatest common divisor of a and b.

Fill out the empty places of this table to get a sampling of the elements of I(9, 6), namely I(a, b) with

a = 9 and b = 6:

s t sa + tb s t sa + tb s t sa + tb
0 0 0 2 0 −1 0
0 1 6 2 1 −1 1
1 0 9 2 −1 −1 2
1 −1 3 2 −2 −1 3

14. The preceding result is called Bézout’s lemma: The greatest common divisor of two positive numbers

a and b can be written as sa+ tb for some integers s, t, and it is the smallest positive number that can

be written this way.
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A classical puzzle is to measure exactly 1 gallon of water into a tank if you only have a 3 gallon measure

and a 5 gallon measure. This is possible because the greatest common divisor of 3 and 5 is 1, so by

Bézout’s lemma we write 1 = 2× 5− 3× 3 and apply this by filling the tank with 2 5-gallon measures

then draining out (subtracting!) 3 3-gallon measures of water.

If we have only a 2 gallon measure and a 4 gallon measure, then by the same lemma it is impossible

to end up with exactly one gallon of water since the greatest common divisor of 2 and 4 is 2, and no

smaller positive amount can be obtained by filling and draining.

Find the procedure for measuring out exactly 1 gallon of water if you only have a 9 gallon measure

and an 11 gallon measure.

15. To prove Bézout’s lemma, suppose a > b > 0 are given and let d be the smallest positive number that

can be written as d = sa + tb for some integers s, t. We already know that any common divisor of a

and b also divides d. It remains to show that d itself is a common divisor of a and b.

So divide a by d and consider the remainder: a = qd + r, so

r = a− qd = a− q(sa + tb) = a− (qs)a− (qt)b = (1− qs)a + (−qt)b,

so the remainder can also be written as s′a + t′b for integers s′ = 1 − qs and t′ = −qt, so r ∈ I(a, b).

But by the division principle, the remainder r satisfies 0 ≤ r < d, and d is the smallest positive integer

in I(a, b), so we must conclude that r = 0. Thus a = qd, so d is a divisor of a.

Repeat this argument with any needed changes to show that d is a divisor of b as well. Conclude that

d is a common divisor of a and b.

16. The extended Euclidean algorithm is one way to find the numbers s, t such that sa + tb = gcd(a, b).

(Here gcd(a, b) denotes the greatest common divisor of a and b.) In this algorithm, not only do we
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keep track of the remainders rn and quotients qn, we keep track of two more sequences sn and tn that

ultimately equal s and t. Namely, start with r0 = a and r1 = b as before, but now also put s0 = 1,

s1 = 0, t0 = 0, and t1 = 1, and then for n = 1, 2, . . ., compute

rn+1 = rn−1 − qnrn, where qn is the whole-number quotient rn−1/rn,

sn+1 = sn−1 − qnsn,

tn+1 = tn−1 − qntn.

For example, starting with a = 36 and b = 8 gives this table:

n rn qn sn tn
0 36 1 0
1 8 4 0 1
2 4 2 1 −4
3 0

We stop at r3 = 0 since it is then impossible to find q3. The greatest common divisor of 36 and 8 is

then found at r2 = 4, and it may be written as r2 = 4 = 1× 36 + (−4)× 8 = s2a + t2b.

Fill out this similar table to find the greatest common divisor of 60 and 45 as a combination of the two

numbers:

n rn qn sn tn
0 60 1 0
1 45 0 1
2
3

17. To prove that the extended Euclidean algorithm works, it suffices to prove that

rn = sna + tnb, for n = 0, 1, 2, . . . , N ,

since then the last nonzero remainder rN , which is gcd(a, b), will equal sa+ tb with s = sN and t = tN .

So we first check n = 0:

s0a + t0b = 1× a + 0× b = a = r0.

And we then check n = 1:

s1a + t1b = 0× a + 1× b = b = r1.

And we finally check the cases n > 1 “by induction” using the recursive formulas:

sn+1a + tn+1b = (sn−1 − qnsn)a + (tn−1 − qntn)b

= sn−1a− qnsna + tn−1b− qntnb

= sn−1a + tn−1b− qnsna− qntnb

= [sn−1a + tn−1b]− qn[sna + tnb]

= [rn−1]− qn[rn]

= rn+1.
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The formula thus works for all n until rN+1 = 0, after which qn is undefined.

18. Now let us consider how many steps the modern Euclidean algorithm will need to find gcd(a, b).

Starting with r0 = a and smaller r1 = b, it produces new, smaller remainder rn+1 after step n, and

terminates when rn+1 = 0. We have

r0 = a > b = r1 > r2 > · · · ≥ 0,

and each reduction is by at least 1, so it will take at most b steps to hit zero.

But b steps is a lot of work if b is large. A better estimate comes from Lamé’s theorem: If Euclid’s

algorithm takes N steps to get rN+1 = 0, then r0 ≥ FN+1 and r1 ≥ FN , where Fn is the nth Fibonacci

number.

The Fibonacci numbers are defined by this recursion:

F0 = 0

F1 = 1

Fn+1 = Fn + Fn−1, for n = 1, 2, 3, . . .,

The first few values are thus the well-known sequence

F0 F1 F2 F3 F4 F5 F6 F7 F8 F9

0 1 1 2 3 5 8 13 21 34

See if you can compute F17.

19. To prove Lamé’s theorem suppose that a > b > 0 and that it takes N divisions in Euclid’s algorithm

to find gcd(a, b), namely that rN > 0 but rN+1 = 0 for r0 = a and r1 = b. Since rn+1 = rn−1 − qnrn,

rn ≥ 0, and qn ≥ 1 for 0 < n ≤ N , we have

rn−1 = qnrn + rn+1 ≥ rn + rn+1.

Now imagine starting at n = N , so rN+1 = 0 and rN ≥ 1. Thus rN−1 is at least as big as the Fibonacci

number F2 since it is the sum of two numbers at least as big as F0 and F1. Working backwards N − 1

more steps, we see that r1 ≥ FN and r0 ≥ FN+1.

To see this in action, use Euclid’s algorithm to find gcd(F9, F8) = gcd(34, 21). Does it take 8 divisions?

How would you describe the sequence r2, r3, . . .?
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20. The worst case for the modern Euclidean algorithm, namely the case requiring the most division

steps, has all quotients equal to 1, so the remainders are found by subtraction just like in the original

Euclidean algorithm.

21. Adjacent Fibonacci numbers have no common divisor greater than 1. In other words, we claim that

gcd(Fn, Fn+1) = 1 for all n = 0, 1, . . .

To prove this claim, note that gcd(F0, F1) = gcd(0, 1) = 1. Now suppose that n > 0 and let d be

a common divisor of Fn and Fn+1. Then d also divides Fn−1 = Fn+1 − Fn (by Euclid’s original

observation!), so d is a common divisor of Fn−1 and Fn. Repeating this argument (how many times?)

shows that d is a common divisor of F0 and F1, so d must be 1.

Try to prove that gcd(Fn, Fn+2) = 1 for all n = 0, 1, 2, . . .. Hint: apply Euclid’s observation to

Fn+2 = Fn+1 + Fn and Fn to reduce to the case of computing gcd(Fn+1, Fn), which is known to be 1.

22. Another application of Bźout’s lemma and the extended Euclidean algorithm is to answer questions

like: “Is there an integer x such that 34x − 1 is divisible by 21?” The answer is “yes” if and only if

there is an integer y such that

34x− 1 = 21y, ⇐⇒ 34x + (−y)21 = 1,

which by Bézout’s lemma exists if and only if gcd(34, 21) = 1. But we recognize that 34 and 21 are

adjacent Fibonacci numbers, so their greatest common divisor is 1, so there is indeed a solution.

See if you can find x using the extended Euclidean algorithm.
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23. In general, the answer to the question “Is there an integer x such that Mx−D is divisible by N?” is

yes if and only gcd(M,N) divides D.

If gcd(M,N) = 1, then the answer is yes for every D. Given D > 1 simply find x, y such that

Mx + Ny = 1, and then use Dx since

D = D × 1 = D(Mx + Ny) = M(Dx) + (Dy)N,

so M × (Dx)−D = (Dy)×N , a multiple of N .

• What is the answer if D = 0? (Notice that M and N can be anything and the answer will be the

same!)

• What is the answer if M = 2019, N = 9999, and D = 9?

• The answer will be yes if M = N = D. Can you find an x that works in all such cases? Will any

x work?

24. There is an exponential formula for Fibonacci numbers:

Fn =
Φn − (−Φ)−n√

5
,

where Φ = (1 +
√

5)/2 ≈ 1.618 . . . and
√

5 ≈ 2.236 . . .. Since Φ−n = 1/Φn < 1 for all n > 0, and√
5 > 2, the following simpler formula gives the same answer:

Fn = round

(
Φn

√
5

)
,

where round(X) denotes the integer nearest to the number X. We can use this to estimate the number

of decimal digits D in the nth Fibonacci number Fn:

10D = Fn ≈
Φn

√
5
,
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where we may ignore the small difference caused by rounding since the numbers are very large for large

n. Such equations are solved by logarithms:

log(10D) = D log(10) = log(Fn) ≈ log

(
Φn

√
5

)
= n log(Φ)− log(

√
5),

so

D ≈
[

log(Φ)

log(10)

]
n−

[
log(
√

5)

log(10)

]
≈ 0.2090n− 0.3495.

The accuracy improves as n increases. Roughly speaking, Fn has about 0.2n, or about n/5, digits, so

F100 has more than 20 digits (in fact it is more than 300 billion billion).

By Lamé’s theorem, this means that the smallest numbers that require 100 divisions in Euclid’s algo-

rithms are bigger than 300 billion billion.

• About how many digits will there be in the smallest numbers that require one million divisions

in Euclid’s algorithm?

• Suppose that a is a one-million-digit number. How many divisions will it require, at most, to find

gcd(a, 34)?

25. To derive the exponential formula for Fibonacci numbers, use a fact about their generalization: a Lucas

sequence is determined by initial values L0 = A and L1 = B and the recursion

Ln+1 = PLn + QLn−1, n = 1, 2, 3, . . .

(The Fibonacci sequence is the special case with A = 0, B = 1, and P = Q = 1.)

We first suppose that the nth term is of the form

Ln = rn,
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where r is a numbers to be determined. For this to satisfy the recursion we must have

rn+1 = Prn + Qrn−1, n = 1, 2, 3, . . .

so either r = 0 (in which case Ln = 0 for all n) or else r 6= 0 and we may divide both sides by rn−1 to

get the quadratic relation

r2 = Pr + Q.

This imposes a condition on r: it is a root of the quadratic equation r2 − Pr − Q = 0. We may use

the quadratic formula to find the two roots:

r± =
P ±

√
P 2 + 4Q

2
,

which in the Fibonacci case gives r+ = (1 +
√

5)/2 = Φ and r− = (1−
√

5)/2.

Then we observe that the sum of two solutions to the recurrence is also a solution, and likewise any

constant multiple of a solution is also a solution. We may thus try the exponential formula

Fn = arn+ + brn−,

which solves Fibonacci’s recursion for any a, b, and then find values for a, b that give F0 = 0 and F1 = 1.

• Show that r− = 1/r+ = −1/Φ = (−Φ)−1. Hint: rationalize

1

r−
=

2

1−
√

5
=

2(1 +
√

5)

(1−
√

5)(1 +
√

5)
.

• Find a, b such that 0 = F0 = ar0+ + br0− = a + b and 1 = F1 = ar1+ + br1− = ar+ + br− =

aΦ + b(−Φ)−1. Hint: solve the 2×2 system of linear equations for the unknowns a and b in terms

of r+ and r−, then simplify.
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