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Math Circle - March 24, 2019 

An Introduction to Knot and Link Theory 

Jesus Oyola Pizarro 

What is a knot? What is a link? 

“A knot is just such a knotted loop of string, except that we think of the string as having no 

thickness, its cross-section being a single point. The knot is then a closed curve in space that 

does not intersect itself anywhere.” (Adams, 1994, p. 2) 

That is, a knot is an embedding of a circle in 3-dimensional Euclidean space.S1  

Examples: 

   

                                   Unknot (U)              Trefoil (T)               Trefoil* (T*)  

On the other hand, a link is a collection of disjoint knots, but which may be linked up, or knotted 

up, together. 

Examples: 

   . 

                                 Hopf Link (H)                  2-component Unlink (2-U) 
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Problem 1: Together with your assigned group, and using the given materials, construct the 

previous given projections of U, T, T* and H. 

A very brief summary of the history of knot theory 

1880s: 

- It was believed that a substance called ether filled all of space.  

- Lord Kelvin (William Thomson, 1824-1907) claimed that atoms = knots (made of ether).  

- This motivated Scottish physicist Peter G. Tait (1831-1901) to try to list all of the possible 

knots, which would result in a table of the elements. 

- But in 1887, Michelson-Morley experiment proved that Kelvin was wrong.  

- Chemists lost interest in knots for the next 100 years (because of Bohr’s model). 

1980s: 

- Biochemists discovered knotting in DNA molecules. 

- Synthetic chemists claimed that could be possible to create knotted molecules, where the type 

of knot determines the properties of the molecule. 

In the present, knot theory have several applications to chemistry and biology. 

 

In the meantime, after chemists lost interest in knots (1880s), mathematicians became intrigued 

with knots. Two main questions are the following:  

- How to classify knots? 

- How to tell if two knots are isotopic (i.e., the same)? 

Mathematicians make a lot of progress with something called knot invariants. We'll learn a 

little bit of this Today. 
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Ambient Isotopy 

“We will not distinguish between the original closed knotted curve and the deformations of that 

curve through space that do not allow the curve to pass through itself. All of these deformed 

curves will be considered to be the same knot. We think of the knot as if it were made of easily 

deformable rubber.” (Adams, 1994, p. 2) 

Example: 

 

These are examples of ambient isotopy. 

Definition: The movement of the string through three-dimensional space without letting it pass 

through itself is called an ambient isotopy. 

Problem 2: Do all the following pictures describe a sequence of ambient isotopies? Justify your 

answer. 

 

Answer: 
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Definition: “The places where the knot crosses itself in the picture are called the crossings of the 

projection.” (Adams, 1994, p.3) 

Definition: “A deformation of a knot projection is called a planar isotopy if it deforms the 

projection plane as if it were made of rubber with the projection drawn upon it.” (Adams, 1994, 

p. 12) 

Note that all the following are one-crossing projections of U, since we only need to untwist the 

single crossing (and apply planar isotopy): 

 

One-crossing projections of U 

Reidemeister Moves 

Definition: “A Reidemeister move is one of three ways to change a projection of the knot that 

will change the relation between the crossings.” (Adams, 1994, p.13) 

Note: We will assume that the given projection of the knot only changes in the enclosed area 

depicted in the figure. 

Reidemeister I (R-I): twist or untwist 

 

Reidemeister II (R-II): add two crossings or remove two crossings 
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Reidemeister III (R-III): slide a strand from one side of a crossing to the other side of the 

crossing 

 

In 1926, the german mathematician Kurt Reidemeister (1893-1971) proved the following fact: 

Theorem: If we have two distinct projections of the same knot, then we can get from the one 

projection to the other by a series of Reidemeister moves and planar isotopies. 

Example: 

Show that the two projections in the following figure represent the same knot by finding a series 

of Reidemeister moves from one to the other. 

 

A solution: (Recall that knots are “unaffected” by ambient isotopies. In particular, by 

planar isotopies.) 
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Problem 3: 

Show that the projection in the following figure represent the unknot U by finding a series of 

Reidemeister moves (and planar isotopies). You must use all three Reidemeister moves. 

 

Answer: 
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Equality of links 

“Two links are considered to be the same if we can deform the one link to the other link without 

every having any one of the loops intersect itself or any of the other loops in the process.” 

(Adams, 1994, p. 17) 

Problem 4: Explain why the two following projections represent the same link, which is 

called Whitehead link. 

 

Answer: 
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Invariants 

Definition: A knot (or link) invariant is a quantity (in a broad sense) defined for each knot (or 

link) which is unchanged by ambient isotopy. That is, equivalent knots (or links) have the same 

invariant.  

Remarks:  

- If two knots (or links) have the same invariant that doesn’t mean that they are the same 

knot (or link). Today we’ll see an example of this. 

- There are many discovered invariants, but Today we’ll study three of them: crossing 

number, linking number and the Alexander-Conway polynomial. 

 

Crossing Number 

Definition: “The crossing number of a knot K, denoted c(K), is the least number of crossings 

that occur in any projection of the knot.” (Adams, 1994, p. 67) 



9 

Problem 5: Why is c(K) a knot invariant? 

Answer: 

 

 

 

 

 

Problem 6: Explain why there are no one-crossing, nor two-crossing, nontrivial knots. 

Answer: 

 

 

 

 

 

 

 

Determining the crossing number of a knot K 

For this, we start by considering a projection of the knot K with some number of crossings n. 

Then, by definition, c(K) n. Now, if all of the knots with fewer crossings than n are known, and≤  

if K does not appear in the list of knots of fewer than n crossings, then c(K)=n. Today we will 

learn a little bit about Knot Tabulation, but for more you can take a look at Chapter 2 of Adams 

(1994). // 
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Reduced alternating projection of a knot K 

Definition: “An alternating knot is a knot with a projection that has crossings that alternate 

between over and under as one travels around the knot in a fixed direction.” (Adams, 1994, p. 7) 

Examples: T and T* (look at page 1) 

Definition: “Call a projection of a knot reduced if there are no easily removed crossings, […]” 

(Adams, 1994, p. 68) 

That is, we don’t find a crossing that looks like the following: 

 

In 1986, Lou Kauffman (University of Illinois at Chicago), Kunio Murasugi (University of 

Toronto) and Morwen Thistlethwaite (University of Tennessee) proved the following fact:  

Theorem: A reduced alternating projection of a Knot K exhibits c(K) crossings. 

Problem 7: For each one of the previous projections of U, T and T* (pages 1 and 6) determine if 

the given projection is a reduced alternating projection. If no, explain why. If yes, determine 

c(K). Do the same with the following projections of 8 and 3T. Compare each possible pair of the 

previous five knots: (U,T), (U,T*), (U,8), (U,3T), (T,T*), (T,8), (T,3T), (T*,8), (T*,3T), (8,3T). 

What can you conclude in each case? 

 

                            Figure eight (8)                        Three-twist (3T) 
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Answer: 

 

 

 

 

 

 

 

 

 

 

 

Linking Number 

Definition: “An orientation is defined by choosing a direction to travel around the knot. 

This direction is denoted by placing coherently directed arrows along the projection of 

the knot in the direction of our choice. We then say that the knot is oriented.” (Adams, 

1994, p.10) 

Example: 

 

Oriented T* 
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Definition: Let and be two components in a link. Their linking number isK1 K2  

defined as follows:  

- Choose an orientation for each of and K1 .K2  

- At each crossing of with  assign +1 or -1 according to the followingK1 ,K2  

figure: 

 

- Add up all the previous +1 and -1, and divide by 2. 

Define the linking number of and , denoted by L( to be the previous number.K1 K2 , ),K1 K2   

Remark: “Note that if a crossing is of the first type, then rotating the understrand clockwise 

lines it up with the overstrand so that their arrows match. Similarly, if a crossing is of the second 

type, then rotating the understrand counterclockwise lines the understrand up with the overstrand 

so that their arrows match.” (Adams, 1994, p.19) 

Example: Compute the linking number of the two components of H for two possible 

orientations. 

A solution: 
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Problem 8: Compute the linking number of the two components of H for the other two possible 

orientations. What can you conclude about L( ?, )K1 K2  

Answer: 

 

 

 

 

 

 

Problem 9: Compute the linking number of the two components in the following oriented link 

L: 

. 

 

Answer: 
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Problem 10: In this problem, we’ll conclude that the linking number is an invariant of the 

oriented link. That is, once the orientations are chosen on the two components of the link, the 

linking number doesn’t change by ambient isotopies. After studying page’s 5 theorem, it is not 

difficult to understand that we can get from any one projection of a link to any other by a series 

of Reidemeister moves. Explain why two different projections of the same oriented link yield the 

same linking number. (Hint: Note that applying any of R-I, R-II or R-III to a single component 

of the link doesn’t affect the linking number, so you only care about Reidemeister moves applied 

to strands of the different components.) 

Answer: 
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Problem 11: Compute the linking number of the two components in the following oriented 

projection of 2-U. Compare, via | |, H, L and 2-U. What can you conclude?(K , )L 1 K2  

 

Answer: 

 

 

 

 

 

 

 

 

 

Alexander (1920’s)-Conway Polynomial (1970’s), ∇ 

∇is a polynomial for oriented knots and links, and we describe it so that its variable is t. 

Definition: For an oriented knot (or link), we have the following rules: 

- Rule 1: ∇(U)=1, where we consider any projection of U 
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- Consider three projections of knots (or links) and (or and  that are,K+ K− K0 ,L+ L− )L0  

identical, except in the region depicted in next figure: 

. 

Rule 2: ∇( ) - ∇( ) = x∇( ).K+ K− K0  

After see this definition, the “most natural” question could be the following: 

- Why is this an invariant for oriented knots (or links)? That is, why the calculation of the 

polynomial cannot depend on the particular projection that we start with? For this, we 

know that it must be unchanged by the Reidemeister moves. 

Today we’re not going to show that this is a knot (link) invariant. But let’s think about with 

examples/problems. 

Example: Determine ∇for the following two two-component oriented links:  

.  

What can you conclude about them? 

Solution: 
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Problem 12: Reverse the orientation of one of the circles in previous oriented H and compute 

∇. 

Answer: 
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Problem 13: For the given example of the oriented Hopf link (before problem 12), choose the 

other crossing and compute∇. 

Answer: 

 

 

 

 

 

 

 

Problem 14: Show that ∇(n-U)=0, for any n  (n is a natural number).≥ 3  

Answer: 
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Problem 15: Compute ∇ for the following oriented projections of T and T* using the specified 

crossing. What can you conclude? Now, change the orientation of T* and compute ∇. Then, 

compare with your previous computation of T. What can you conclude? 

 

Answer: 
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Fact: T and T* are not ambient isotopic!!!!!!!!!! 

Extra problems (Homework): 

(Challenge) Problem 16: Compute ∇(8). 

(Challenge) Problem 17: Prove previous fact. 
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