1 Complex Numbers

For this worksheet, we denote the set of all real numbers as \mathbb{R}. For a quadratic polynomial $a x^{2}+b x+c$ with $a, b, c \in \mathbb{R}$, we can find the roots using the quadratic equation.

$$
\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Classically an issue arose when $b^{2}-4 a c<0$ since the square root of a negative real number was undefined. Here the idea of a complex number was born, we define the imaginary number i,

$$
i:=\sqrt{-1} .
$$

So now we can write numbers such as $\sqrt{-16}=4 i$ or $\sqrt{-48}=4 i \sqrt{3}$. These numbers and all others of the form $b i$ where b is a real number (i.e. $b \in \mathbb{R}$) are called purely imaginary numbers. From this idea, we consider numbers of the form $z=x+i y$ where $x, y \in \mathbb{R}$. These numbers are known as complex numbers, and the space of all complex numbers will be denoted \mathbb{C}. Here are some operations and properties of complex numbers for $z=x+i y, w=a+b i \in \mathbb{C}$ and $c \in \mathbb{R}$

1. The conjugate of a complex number: $z=x+i y$, as $\bar{z}:=x-i y$
2. The modulus of a complex number: $z=x+i y$, as $|z|:=\sqrt{x^{2}+y^{2}}$
3. Addition of Complex Numbers: $z+w=(x+i y)+(a+b i):=(x+a)+(b+y) i$
4. Scalar Multiplication: $c z=c(x+i y)=c x+c y i$
5. Multiplication of Complex Numbers: $z w=z \cdot w=(x+i y)(a+b i):=a x+b x i+a y i+b y i^{2}=$ $(a x-b y)+(b x+a y) i$. Notice we essentially "foiled" the two complex numbers and used $i^{2}=-1$
6. $\overline{z+w}=\bar{z}+\bar{w}$
7. $\overline{z w}=\bar{z} \cdot \bar{w}$
8. $|z w|=|z| \cdot|w|$
9. NOTE: $|z+w| \leq|z|+|w|$ with equality when $z=\lambda w$ for some $\lambda \in \mathbb{R}$

If we consider a complex numbers $z=x+i y$ and $w=a+b i$ as and ordered pair (x, y) and (a, b) respectively then we can get a graphical representation of z, w, and $z+w$ in the $x y-p l a n e$

If we use some trigonometry and polar coordinates, we can write $z=x+i y$ as $r \cos (\theta)+i r \sin (\theta)$ where $r=|z|$ and θ is the angle z makes with the positive $x-\operatorname{axis}$. If $\frac{-\pi}{2}<\theta<\frac{\pi}{2}$, then $\theta=\arctan \left(\frac{y}{x}\right)$.
Euler's Formula: For a complex number $z=x+i y$ and r, θ defined above, $r \cos (\theta)+i r \sin (\theta)=r e^{i \theta}$ for k an integer.
Note In practice when using Euler's formula θ is taken in the range $0 \leq \theta<2 \pi$. But it is helpful to keep in mind that since $\sin (\theta)$ and $\cos (\theta)$ are 2π-periodic we can write $z=r e^{i \theta}=r e^{i \theta+2 \pi i k}$ when k is an integer. Examples

1. $z=3 i$ then $\theta=\frac{\pi}{2}$ and $r=3$ so we can write z as $3 \cos \left(\frac{\pi}{2}\right)+3 i \sin \left(\frac{\pi}{2}\right)$ and $3 e^{\frac{i \pi}{2}}=3 e^{\frac{i 5 \pi}{2}}$
2. $z=-2 \sqrt{3}-2 i$ then $\theta=\frac{7 \pi}{6}$ and $r=4$ so we can write z as $4 \cos \left(\frac{7 \pi}{6}\right)+4 i \sin \left(\frac{7 \pi}{6}\right)$ and $4 e^{\frac{7 \pi i}{6}}$

2 Convolution

We now define the convolution operator on two finite sets of complex numbers $\mathbf{z}=\left\{z_{1}, z_{2}, \ldots, z_{m}\right\}$ and $\mathbf{w}=\left\{w_{1}, w_{2}, \ldots, w_{n}\right\}$ as,

$$
\mathbf{z} * \mathbf{w}:=\left\{(\mathbf{z} * \mathbf{w})_{1},(\mathbf{z} * \mathbf{w})_{2}, \ldots,(\mathbf{z} * \mathbf{w})_{m+n-1}\right\}
$$

where,

$$
(\mathbf{z} * \mathbf{w})_{i}=\sum_{j=1}^{m} z_{j} w_{i-j}
$$

for,

$$
1 \leq i \leq m+n-1
$$

and, z_{i} and $w_{j}=0$ if i, j are not in their respective ranges. This may seem like an unusual operation, but it arises naturally in the coefficients of the product of multiplied polynomials.
For polynomials

$$
p(x)=a_{m} x^{m}+\ldots+a_{1} x+a_{0}
$$

and,

$$
q(x)=b_{n} x^{n}+\ldots b_{1} x+b_{0}
$$

we can write,

$$
p(x) q(x)=\sum_{i=0}^{m+n} \sum_{j=0}^{m} a_{j} b_{i-j} x^{i}
$$

Example 1 Let's use convolution to verify that

$$
\left(1+2 x-x^{3}\right)\left(3-4 x+x^{2}\right)=3+2 x-7 x^{2}-x^{3}+4 x^{4}-x^{5}
$$

We begin by calculating $\sum_{j=0}^{m} a_{j} b_{i-j}$ for $i \in\{1,2,3,4,5\}$

1. $(i=0) a_{0} b_{0}=(1)(3)=3$
2. $(i=1) a_{0} b_{1}+a_{1} b_{0}=(1)(-4)+(2)(3)=2$
3. $(i=2) a_{0} b_{2}+a_{1} b_{1}+a_{2} b_{0}=(1)(1)+(2)(-4)+(0)(3)=-7$
4. $(i=3) a_{0} b_{3}+a_{1} b_{2}+a_{2} b_{1}+a_{3} b_{0}=(1)(0)+(2)(1)+(0)(-4)+(-1)(3)=-1$
5. $(i=4)$ the only nonzero terms here are $a_{0} b_{4}+a_{1} b_{3}+a_{2} b_{2}+a_{3} b_{1}+a_{4} b_{0}=(1)(0)+(2)(0)+(0)(0)+$ $(-1)(-4)+(0)(3)=4$
6. $(i=5)$ the only nonzero terms here are $a_{0} b_{5}+a_{1} b_{4}+a_{2} b_{3}+a_{3} b_{2}+a_{4} b_{1}+a_{5} b_{0}=(1)(0)+(2)(0)+$ $(0)(0)+(-1)(1)+(0)(-4)+(0)(3)=-1$

We see now that each value calculated matches the answer given above,so we are done.

3 The Discrete Fourier Transform

For a finite set, sequence, of complex numbers $\mathbf{z}=\left\{z_{1}, z_{2}, \ldots, z_{m}\right\}$ we define the Discrete Fourier Transform, DFT, as,

$$
\mathcal{F}(\mathbf{z}):=\hat{\mathbf{z}}=\left\{\hat{z}_{1}, \hat{z}_{2}, \ldots, \hat{z}_{m}\right\}
$$

with,

$$
\hat{z}_{k}:=\sum_{l=1}^{m} z_{l} e^{\frac{-2 \pi i}{m} k l}
$$

and its inverse as,

$$
\mathcal{F}^{-1}(\hat{\mathbf{z}}):=\mathbf{z}
$$

with,

$$
z_{n}:=\frac{1}{m} \sum_{k=1}^{m} \hat{z}_{k} e^{\frac{2 \pi i}{m} k n}
$$

Let $\mathbf{z}=\left\{z_{1}, z_{2}, \ldots, z_{m}\right\}$ and $\mathbf{w}=\left\{w_{1}, w_{2}, \ldots, w_{m}\right\}$ and $c, \lambda \in \mathbb{C}$. Below are needed properties of the DFT:

1. $\mathcal{F}(c \mathbf{z}+\lambda \mathbf{w})=c \mathcal{F}(\mathbf{z})+\lambda \mathcal{F}(\mathbf{w})$ where $\mathbf{z}+\mathbf{w}=\left\{z_{1}+w_{1}, z_{2}+w_{2}, \ldots, z_{m}+w_{m}\right\}$
2. Convolution Theorem $\mathcal{F}(\mathbf{z} * \mathbf{w})=\hat{\mathbf{z}} \cdot \hat{\mathbf{w}}$

Example Let's see why property 2 is true.

$$
\begin{gathered}
\mathcal{F}\left((\mathbf{z} * \mathbf{w})_{k}\right)=\sum_{l=1}^{m}(\mathbf{z} * \mathbf{w})_{l} e^{\frac{-2 \pi i}{m} k l} \\
\quad=\sum_{l=1}^{m} \sum_{j=1}^{m} z_{j} w_{l-j} e^{\frac{-2 \pi i}{m} k l} \\
=\sum_{j=1}^{m} z_{j} \sum_{l=1}^{m} w_{l-j} e^{\frac{-2 \pi i}{m} k l} \\
=\sum_{j=1}^{m} z_{j} e^{\frac{-2 \pi i}{m} k j} \hat{w}_{k}=\hat{z}_{k} \hat{w}_{k}
\end{gathered}
$$

Since it holds true for the $k^{\text {th }}$ component the equality holds for all entries.

4 Problems

Problem 1. (Euler's Identity): Write -1 in the form $r e^{i \theta}$ to recover this famous identity.

Problem 2. (De Moivre's Theorem) Explain why $(r \cos (\theta)+i r \sin (\theta))^{n}=r^{n} \cos (n \theta)+i r^{n} \sin (n \theta)$ and use this fact to prove the double angle trig identities for $\sin (2 \theta)$ and $\cos (2 \theta)$

Problem 3. Using polar form, $r e^{i \theta}$, calculate the 3 values that satisfy $x^{3}=1$. Check by using the difference of cubes formulas.

Problem 4. Calculate i^{2019}, \sqrt{i}, and when $k=0, i^{i}$

Problem 5. Using convolution calculate $\left(3-2 x+x^{2}\right)\left(x-x^{3}\right)$

Problem 6. Stereographic Projection Imagine the sphere $x^{2}+y^{2}+z^{2}=1$. Starting at the North Pole (the point $(0,0,1)$), find a formula that maps every point on the sphere except $(0,0,1)$ uniquely to a point in the xy-plane.

Problem 7. Use the same idea as in problem 2 to find the formulas for $\sin (3 \theta)$ and $\cos (3 \theta)$. Now use Pascal's triangle to find a a formula for $\sin (n \theta)$ and $\cos (n \theta)$ when n is a natural numbers.

Problem 8. The quadratic equation is derived by setting $a x^{2}+b x+c=0$ dividing by a then completing square. An explicit formula for the roots of a cubic polynomial exists. For simplicity, use $x^{3}+a x^{2}+b x+c$ to find an explicit formula for the roots of this cubic polynomial. (Hint: Take the substitution $x=y-\frac{a}{3}$)

Problem 9. Prove the Triangle Inequality. (Start by considering what $z \bar{z}=$? and using this for $|z+w|$)

Problem 10. Use $\sum_{n=0}^{N} z^{n}=\frac{z^{N+1}-1}{z-1}$ to calculate $\sum_{n=0}^{N} \cos (n \theta)$

Problem 11. Use the DFT to calculate $\mathcal{F}(\{1,0,0,0\}), \mathcal{F}(\{0,1,0,0\}), \mathcal{F}(\{0,0,1,0\})$, and $\mathcal{F}(\{0,0,0,1\})$.

Problem 12. Use the Convolution Theorem and Inverse DFT to calculate $\left(3-2 x+x^{2}\right)\left(x-x^{3}\right)$.

5 Further Reading

1. The Fundamental Theorem of Algebra
2. The Quartic Equation for the roots of a polynomial of the form $a x^{4}+b x^{3}+c x^{2}+d x+e$
3. Why no formulas exist for polynomials of degree 5 or higher
4. The Convolution of Functions
5. The Fast Fourier Transform
