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Introduction

What does a paradox mean to you? A simple definition of a paradox is a statement that

seems to contradict itself. This contradiction can be very confusing! Paradoxes can come in

many flavors. We shall see that paradoxes can arise in all areas of mathematics. Some

paradoxes come about because of a lack of understanding or intuition. The conclusion may

seem contradictory at first, but actually all the reasoning is logically sound. Other

paradoxes either indicate poor mathematical reasoning or some deeper problem with

underlying logical or foundational issues.

Question 1. Give an example of a paradox (it doesn’t have to be mathematical).

1 A lighthearted example

The following example of a paradox maybe doesn’t represent a serious logical problem like

some of the others we will study, but it’s fun!

Example 2. Consider the set of all positive integers. Are all these numbers interesting?

Well, turns out they have to be! Suppose to the contrary that not all positive integers are

interesting. Then there exists a least number, call it m, that is not interesting. What is

contradictory about this?

Perhaps this seems “paradoxical” because the claim that all numbers are interesting on its

face appears to be unreasonable. The proof also seems like a sleight of hand- it doesn’t
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really tend to convince most people! But notice that everything in this example hinges on

the word “interesting.” And that word can mean different things to different people!

2 Logical Paradoxes

Some paradoxes arise seemingly because of the “structure” of logic itself. For example, it is

impossible to assign a truth value to certain sentences. Most sentences, particularly in the

context of mathematics can be assigned a definite truth value. For instance, the sentence

“there exists a number whose square is four” is true, while the sentence “there exists

precisely one number whose square is four is false” because there are precisely two numbers

which square to four. However, the following example illustrates there are sentences for

which this fails.

Example 3. Consider the sentence “this sentence is false.” Explain why this sentence

cannot be assigned a truth value without leading to a logical contradiction.

There are even more complicated examples, such as the following statement which is

known as Curry’s paradox.

Example 4 (Curry’s Paradox). Consider the sentence: If this sentence is true, then

Germany borders China.

Question 5. Note that logical implications are written in the form “if A, then B.” What

are A and B in this case?
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Question 6. Assume A. Why does this automatically imply that B is true?

Question 7. The previous question implies that the sentence (as a whole) is true. Why

does this lead to a paradox?

In some instances, paradoxes can arise because of inherent problems with definitions or

axioms. Axioms are mathematical statements which we assume to be true without proof.

You can think of axioms as a foundation for a house or building. Oftentimes, we say that

axioms are ”obvious” or ”self evident,” but sometimes figuring out which axioms are

necessary to have a consistent theory is more complicated than it would seem.

For example, mathematicians for a while believed that defining the word set as a collection

of objects was okay. This seems like a perfectly reasonable definition! In fact, clever

mathematicians and logicians realized that there were problems with this definition as the

following example illustrates:
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Example 8 (Russell’s paradox). Let S be the set of all sets that do not contain themselves

as an element. Does S contain itself? Why does this lead to a contradiction either way?

If this is a bit too abstract, consider the following example, which is really just a rewording

of Russell’s paradox:

Example 9. Suppose there is a barber in a town who shaves all the men who do not shave

themselves. Who shaves the barber? Explain the paradox.

3 Problems with Proofs

In some cases, paradoxes or absurd statements can come about because we have actually

made a mistake in our reasoning. Thus, the paradox can be resolved by identifying the

mistake in our reasoning. The following example is a classic. Before we can proceed

though, we need to review the proof technique of induction.

Induction is usually used to prove that a statement holds for all positive integers. The

steps are as follows:
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1. Prove that the statement holds for a base case (usually this corresponds to n = 0 or

n = 1, but not always).

2. Assume the claim holds for some positive integer n. ( this is called the induction

hypothesis).

3. Show this implies that the claim holds for the integer n+ 1 (this is called the

induction step).

We illustrate this procedure by proving that, for all integers n ≥ 1:

n∑
j=1

j =
n(n+ 1)

2
. (∗)

Proof.

To see the base case is true, simply plug n = 1 into the formula. We get

1(1 + 1)

2
=

2

2
= 1 =

1∑
j=1

j,

so the base case holds.

Next, suppose that for some integer n, we have

n∑
j=1

j =
n(n+ 1)

2
.

Assuming the above equation is true, we compute:

n+1∑
j=1

j =
n∑

j=1

j + (n+ 1) =
n(n+ 1)

2
+ (n+ 1) =

n(n+ 1) + 2n+ 2

2
=

(n+ 1)(n+ 2)

2
.

This string of equalities shows that the statement (∗) holds for the integer n+ 1 (just

substitute n+ 1 in for n into (∗)). So, by induction, the formula (∗) is true for all positive

integers n.

Question 10. Identify the exact step above where we used the induction hypothesis.
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We now proceed to “prove” by induction that all horses are the same color. Precisely, we

prove that given any group of n horses, all the horses are the same color. Obviously, the

conclusion is absurd, so that tells you there must be a problem with the proof! See if you

can identify exactly where the error is.

Example 11 (All horses are the same color). Proof. The base case n = 1 is easy, since

obviously a single horse is a single color. Assume that given a group of n horses, all of them

have the same color. Now suppose we have a group of n+ 1 horses. Excluding one horse,

we get a group of n horses. By our induction hypothesis, all these horses have the same

color, which we might as well assume is brown (it could be black or white or whatever, but

it doesn’t matter). Now exclude a different horse from the group. This creates a different

group of n horses, and by the induction hypothesis they must all have the same color as

well. Since the horses that are in both groups only have one color, this shows that the

horses in the second group are colored brown. Thus, all of the horses are brown.

Question 12. Identify exactly where the error is in the preceding proof.

4 A Paradox of Probability

The following scenario leads to a conclusion that may seem paradoxical, but actually the

mathematical reasoning is sound and the paradox is not telling us there is something

wrong with our mathematics. The following is a version of what is famously called the

Monty Hall Problem. The answer is very surprising!

Example 13 (Monty Hall Problem). Suppose a contestant is on a game show. The

contestant has to choose one of three doors. Behind one door is a car, and behind the other

two doors are goats. If the contestant picks the door with the car, he or she wins the car.

Otherwise, he or she goes home empty handed. The contestant makes his or her choice of
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Figure 1: The Monty Hall Problem

door, and then the host opens one of the two unchosen doors that contains a goat. Assume

that if both of the unchosen doors contain a goat, the host is equally likely to open either

of them. Is it beneficial for the player to switch doors? Explain your answer and calculate

the probabilities.
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5 Paradoxes with Summation

We know how to add up finitely many numbers, but things become much more complicated

when we turn to adding infinitely many numbers. Loosely speaking, a series is an infinite

sum, and one of the most famous series is the following:

∞∑
n=1

(−1)n = 1− 1 + 1− 1 + 1− 1 + ...

So we begin by taking 1, then substracting 1, then adding 1, then subtracting 1, and so on

indefinitely. The problem is to determine what we obtain when we do this procedure.

Question 14. Show that by grouping terms appropriately, you can argue the infinite sum

is 1.

Question 15. Show that by grouping terms appropriately, you can argue the infinite sum

is 0.

Since we got two different answers for the sum depending on the grouping of terms,

something must be wrong. In fact, mathematicians realized that they had to develop a

more rigorous definition of an infinite sum than simply “adding up infinitely many

numbers.” More precisely, they developed the notion of convergence or divergence of a sum.

Loosely speaking, a sum converges if when we keep adding up terms sequentially, the

numbers we get at each step approach a single number. This number is then the sum of the

series. In the previous example, the sum does not converge, it instead diverges. This is

because the partial sums switch back and forth between 1 and 0 when we add up the

numbers sequentially.
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There is a specific class of series that we know converge. They are called geometric series.

First, consider a finite geometric sum with common ratio r :

N∑
n=1

rn = 1 + r + r2 + · · ·+ rN .

Question 16. Compute (1− r)
∑N

n=1 r
n and notice it simplifies very nicely. Then divide

through by (1− r) to obtain a formula for a finite geometric sum.

If |r| < 1, it can be shown by taking a limit of these partial sums that

∞∑
n=1

rn =
1

1− r
.

Thus, in this case the infinite series converges and we actually have a formula for the value

of the infinite sum.
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Question 17 (For those with exposure to limits). Show that if |r| < 1, then

lim
N→∞

N∑
n=1

rn =
1

1− r
.

This proves the formula for infinite geometric series.

The next exercise proves that 0.9 = 1, a result that is surprising to most students and

tends to be counter intuitive at first. Note when we write 0.9, we mean the repeating

decimal 0.999999 . . . .

Question 18. Write the repeating decimal 0.9 as a geometric series and use the formula to

show that the sum of this series is 1.
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6 Challenge Problems

Work on these problems only if you have finished all the others.

This first problem requires integral calculus, in particular volumes of solids of revolution

and surface area, as well as improper integration. Ask for help if you are unfamiliar with

these concepts.

This paradox involves Gabriel’s horn, a mathematical object with finite volume and infinite

surface area.

Question 19. Gabriel’s horn is formed by rotating the (unbounded) region in the xy-plane

between the x-axis and the curve y = 1
x

for x ≥ 1 about the x axis. Show using calculus

that Gabriel’s horn has finite volume but infinite surface area.
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The next “paradox,” the existence of a non-measurable set, requires some background in a

field of mathematics called measure theory. To keep things simple, we’ll only consider

measures defined on R. A measure µ is a function A → [0,∞], where A is some collection

of subsets of R satisfying the following two properties:

1. µ(∅) = 0, where ∅ denotes the empty set, or set with no elements.

2. If sets A1, A2, . . . , Aj, . . . are pairwise disjoint (this means that Ai ∩ Aj = ∅ when

i 6= j), then we have

µ(
∞⋃
j=1

Aj) =
∞∑
j=1

µ(Aj)

This second property is referred to as countable additivity. It basically says that when we

decompose a set into pieces and add up the measure of the pieces, we get the measure of

the set.

You should think of a measure as a function that somehow quanitifes the ”size” of a set. It

turns out that the measure most commonly used on the real line, Lebesgue measure,

corresponds on simple sets to what we would think of the “length” of the set. However,

Lebesegue measure allows us to quantify the size of sets much more diverse than just

intervals or finite unions and intersections of intervals (where we could easily just add up

the lengths). There is a serious drawback in measure theory though- it is impossible to

assign a meaningful size or measure to all sets! We will see this with the next example.

Example 20. Suppose µ is a measure that is well-defined on ALL subsets of R so that µ

coincides with our ordinary notion of length on intevrals; that is, µ([a, b]) = b− a. We will

show that such a measure does not exist through a proof by contradiction. In particular,

we construct a set F and show that the properties of µ lead to contradictory information

about F . This basically shows that it is impossible to assign a meaningful size or length to

all subsets of R. The set F is an example of what we call a non-measurable set, which may

seem strange or paradoxical.

We construct the set F as follows. First, define an equivalence relation ∼ on [0, 1] as

follows: x ∼ y if x− y is rational.
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Question 21. Show that ∼ is an equivalence relation (ask for help if you don’t know what

an equivalence relation is).

Now define the set F as follows: choose exactly one element of each equivalence class

defined above. The resulting collection of real numbers is the set F . Pretty strange way to

define a set, huh?

Now, for a real number q, define F + q = {f + q : f ∈ F}. Thus, F + q represents a

“translate” of the set F by q units. It can be shown (we omit the details) that

µ(F ) = µ(F + q) for any rational q.

Question 22. Explain why the sets F + q are disjoint for distinct rational q.
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Question 23. Show that [0, 1] ⊂
⋃

q∈[−1,1]∩Q F + q.

Question 24. Explain why this implies µ(F ) > 0.

Question 25. Show that
⋃

q∈[−1,1]∩Q F + q ⊂ [−1, 2].

Question 26. Show that this implies µ(F ) = 0 and leads to a contradiction.
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