Math Circle (Od. $27^{\text {th }}, 2019$). Presenter: Haohua Deng hashuadeng © must. ed u
Solving Combinatorial Problems by telling Stories
We are going to deal with some elementary combinatorial problems. By "telling Stories". I mean constructing a model which is easier to visualize than mathematical formulas, or describing the problem by some down to cart languages. Sometimes such ideas could be very useful and efficient.

Note: We denote $\binom{n}{k}$ as the \# of ways for picking k out of n distinct objects, and we have $\binom{n}{k}=\binom{n}{n-k}$. Mathematically $\binom{n}{k}=\frac{n!}{k!(n-k)!\text {, but you don't }}$ need to use this formula in most parts of this worksheet.

Let us begin with some examples:
(1). Suppose we have a set of n elements. What is the total number of subsets of it? (ϕ and the set itself should be included.)

Bob is going to hold a party tonight, and he sends out invitations to n of his friends. For each one in the invitation list, he or she has exactly two options: Accept or Decline. Therefore, the subset of the set of invited person has exactly 2^{n} possibilities, which is exactly the \# of subsets of a set with n objects.
Moreover, we get a formula: $2^{n}=\sum_{i=0}^{n}\binom{n}{i}=\binom{n}{0}+\binom{n}{1}+\ldots+\binom{n}{n}$. (D

Let us consider a more challenging one:
(2) Find the \# of solutions for the equation: $X_{1}+\ldots+X_{k}=n$, where k, n are positive integers, and each x_{i} is a non-negative integer.

Now, consider X_{1}, \ldots, X_{k} as k boxes. You have n balls, and you need to put them in these boxes. How many ways for you tu do that?

We can see, each way to assign these balls is uniquely determined by a sequence of $n+k-1$ objects (Which contains n balls $\$ k-1$ bars). Therefore, \# of different such sequences = \# of different ways to assign these balls = \# of solutions of the above equation. For the \# of different such sequences, we can see that it is just equal to \# of ways to take $k-1$ slots out from the sequence for placing bars, thus the answer is $\binom{n+k-1}{k-1}=\binom{n+k-1}{n}$.
(3) Prove the formula= $(1) \sum_{k=0}^{n}\binom{n}{k}^{2}=\binom{2 n}{n}$.
(2) For $m<n, \sum_{k=0}^{n-m}\binom{n-k}{m}=\binom{n+1}{m+1}$ (slightly harder).

How many ways to choose n out of $2 n$ cookies? What if these $2 n$ cookies are made up by n sweet cookies $\$ n$ salty cookies? If you want to choose $m+1$ out if $n+1$ labelled cookies, among each set of $m+1$ cookies, you choose, what about the one with smallest index?

It is time to toke some exercises!

1. Prove the formulas: (1). $\binom{n}{k}\binom{k}{l}=\binom{n}{l}\binom{n-l}{k-l}(l<k<n)$
(2) $\sum_{i=0}^{k}\binom{n}{i}\binom{m}{k-i}=\binom{n+m}{k}$
(*)
2. How many ways to choose 2 subsets A, B from $\{1,2, \ldots, n\}$ s.t. $A \subset B$? What if we want $A \subset B$? What if we want $A \neq \varnothing$?
3. Suppose \mathcal{A} is a set of subsets of $\{1,2 \ldots, n\}$, and satisfies:
(1). Every member of A has exactly k elements.
12) For $\forall i \in\{1,2, \ldots, n, i, i$ is contained in exactly r members of A How many elements (i.e. Subsets of $\{1,2 \ldots, n\}$) does A contain?(**)
4. How many monotome-increasing functions from $\{1,2, \ldots, n\}$ to set?? (Monotne-increasing means $f(a) \leq f(b)$ whenever $a \leq b)$. (**)
5. Prove that for any non-negative integers $m, n, \frac{(2 m)!(2 n)!}{(m+n)!m!n!}$ is always an integer. (\because 米)

Hints / Solutions

1. (1). Among n students, we choose k of them to participate in sport games. Amie these k selected students, l of them mani to play fortall and the remaining want to play basketball. How many possible situations?
2. $A=$ Students with grade $\geq A ; B=$ Students with grade $\geq B$. What is your grade? $\geqslant A, \geqslant B$ but $\angle A$ or $\angle B$?
3. Suppose A has x elements. Image you are teaching n kids mathematics. You give them x problems, and you promise them that each one of them will receive a candy fr each correct answer he/ she provides. If each of them prides exactly r correct answers, and for each pobblem you receive exactly f correct answers. how many candies you should prepare for them?
4. There are n children labelled as $1, \ldots, n$, and each of them has no more than n dollars. Moreover, the $\dot{i}+1)^{\text {th }}$ children has no less money than the $i^{\text {th }}$ does. What if for each i, the $i^{\text {th }}$ children receives $i-1$ dollars in addition?

5- I don't have such a stor. I wish you have one (and I will be appreciated if you can tell me!)
If you know some tricks in number theory, then try to prove it by looking at the power of P in the dividend ξ divisor, where P is any prime number.

