FANTASTIC FACTORING

[Thanks to my friend Harold Reiter of North Carolina for much of this material.]
Following are some factoring patterns, formulas, and a theorem that you might already recognize.

Difference of squares

$x^{2}-y^{2}=(x-y)(x+y)$

Difference of Cubes

$x^{3}-y^{3}=(x-y)\left(x^{2}+x y+y^{2}\right)$

Sum of Cubes

$x^{3}+y^{3}=(x+y)\left(x^{2}-x y+y^{2}\right)$

Pascal's Triangle

Vieta's Formulas connect the coefficients of a polynomial to sums and products of its roots.
This quartic example suggests Viete's formulas [but be careful to correctly assign plus and minus signs].
$(x-p)(x-q)(x-r)(x-s)=x^{4}-(p+q+r+s) x^{3}+(p q+p r+p s+q r+q s+r s) x^{2}-(p q r+p q s+p r s+q r s) x+p q r s$
THEOREM: Given function $f(x)$ and constant $x=a$, the following four statements are equivalent.

1. $f(a)=0$
2. $x-a$ is a factor of $f(x)$.
3. $x=\mathrm{a}$ is a zero of $f(x)$
4. $(a, 0)$ is an \underline{x}-intercept of graph of $f(x)$

Factor the following expressions.

1. $16 x^{4}-81 y^{4}$
2. $125 x^{3}+64 y^{3}$
3. $8 x^{3}-27$
4. $x^{4}+4 x^{3} y+6 x^{2} y^{2}+4 x y^{3}+y^{4}$
5. $x^{5}-10 x^{4}+40 x^{3}-80 x^{2}+80 x-32$
6. There are two distinct ways to "attack" the factorization of $x^{6}-y^{6}$. Try both ways and then convince yourself that they are equivalent.
A. $x^{6}-y^{6}=$
B. $x^{6}-y^{6}=$
7. By studying the patterns for Sum and Difference of Cubes, above, can you determine how to factor each of these?
A. $x^{7}+y^{7}=$
B. $x^{10}-y^{10}=$
C. Explain why $x^{8}+y^{8}$ cannot be factored in a similar way.
8. One technique for factoring expressions with 4 or more terms is factor by grouping. Try these.
A. $4 a b-8 b^{2}+3 a^{3}-6 a^{2} b$
B. $x y+x+y+1$
C. Can you expand $(x+1)(y+1)(z+1)$ in "one step"?

To solve most polynomial equations, you set an expression equal to zero and factor it. However, if you are told that the solutions are integers, other methods are possible.
9. If x is a positive integer, solve: $x(x+1)(x+2)(x+3)+1=379^{2}$

Simon's Favorite Factoring Trick (SFFT) is a great tool for solving certain math contest problems. I will present this example both algebraically and geometrically! I will make each of the three terms represent the AREA of one of the four rectangles in this diagram. Then, I will be "complete the rectangle".

EXAMPLE: Given that x and y are positive integers, solve: $x^{2}+5 x^{2} y^{2}+20 y^{2}=269$
$x^{2}+5 x^{2} y^{2}+20 y^{2}+$ \qquad $=269+$ \qquad

10. p and q are non-zero integers. How many ordered pairs (p, q) satisfy $2 p q+2 p+3 q=18$?

Note: SFFT also works when some terms are negative.
11. Twice the area of a non-square rectangle equals triple its perimeter. If the dimensions are positive integers, what is the area of the rectangle?
12. Compute all integer value of n between 90 and 100 inclusive that cannot be written in the form $n=a+b+a b$, where a and b are positive integers.
13. A, M, and C are positive integers such that $A>M>C$ and $A+M+C=12$. If $A M C+A M+A C+C M=71$, what is the maximum possible value of A ?
14. If $x^{5}+5 x^{4}+10 x^{3}+10 x^{2}-5 x=9$ and $x \neq-1$, compute the numerical value of $(x+1)^{4}$.
15. Find the number of ordered pairs of integers (m, n) for which $m n \geq 0$ and $m^{3}+n^{3}+99 m n=33^{3}$

ANSWERS TO FANTASTIC FACTORING

If need assistance in the solutions of any of these problems, please email me at rickarmstrongpi@gmail.com or ask friends or a math teacher. Rick Armstrong

1. $\left(4 x^{2}+9 y^{2}\right)(2 x-3 y)(2 x+3 y)$
2. $(5 x+4 y)\left(25 x^{2}-20 x y+16 y^{2}\right)$
3. $(2 x-3)\left(4 x^{2}+6 x+9\right)$
4. $(x+y)^{4}$
5. $(x-y)^{5}$

6A. Diff. of Squares: $\left(x^{3}-y^{3}\right)\left(x^{3}+y^{3}\right)=(x-y)(x+y)\left(x^{2}+x y+y^{2}\right)\left(x^{2}-x y+y^{2}\right)$
6B. Diff. of Cubes: $\left(x^{2}-y^{2}\right)\left(x^{4}+x^{2} y^{2}+y^{4}\right)$
6. Proof: It is very difficult to produce the factorization of $\left(x^{4}+x^{2} y^{2}+y^{4}\right)$ from 6B into the two quadratic factors of 6A: $\quad\left(x^{2}+x y+y^{2}\right)\left(x^{2}-x y+y^{2}\right)$. But you can check it by expanding: $\left(x^{2}+x y+y^{2}\right)\left(x^{2}-x y+y^{2}\right)$.

7A. $x^{7}+y^{7}=(x+y)\left(x^{6}-x^{5} y+x^{4} y^{2}-x^{3} y^{3}+x^{2} y^{4}-x^{5} y+y^{6}\right)$
7B. $x^{10}-y^{10}=(x-y)\left(x^{9}+x^{8} y+x^{7} y^{2}+x^{6} y^{3}+\ldots \ldots+x y^{8}+y^{9}\right)$
7C. Using the given theorem, since $y=-x$ does not make $x^{10}+y^{10}$ equal to zero, $(x+y)$ is not a factor of $x^{10}+y^{10}$ so we cannot use the given patterns to factor $x^{10}+y^{10}$.

8 A. $4 a b-8 b^{2}+3 a^{3}-6 a^{2} b=4 b(a-2 b)+3 a^{2}(a-2 b)=(a-2 b)\left(4 b+3 a^{2}\right)$
8B. $(x+1)(y+1)$
8C. $x y z+x y+x z+y z+x+y+z+1$
9. 198 ARML, Individual \#1
$x(x+1)(x+2)(x+3)+1=379^{2}$ OR $x(x+1)(x+2)(x+3)=379^{2}-1^{2}=378 * 380$.
$x(x+1)(x+2)(x+3)$ requires that the 4 factors be consecutive integers.
With that clue, factor: $380 * 378=19 * 20 * 18 * 21$ and $\underline{x}=18$
EXAMPLE: Given that x and y are positive integers,
solve: $x^{2}+5 x^{2} y^{2}+20 y^{2}=269$

$$
\begin{aligned}
& x^{2}+5 x^{2} y^{2}+20 y^{2}+4=269+4 \\
& \left(x^{2}+4\right)\left(5 y^{2}+1\right)=273=3 * 7 * 13
\end{aligned}
$$

\square

$5 y^{2}$	4
$5 x^{2} y^{2}$	$20 y^{2}$

By inspection, the only solution with positive integers requires $x^{2}+4=13$ while $5 y^{2}+1=21$ with $\boldsymbol{x}=\mathbf{3}$ and $\boldsymbol{y}=\mathbf{2}$
10. SIX: $(2,2) ;(-, 20) ;(-12,-2) ;(-5,-4) ;(-3,--8) ;(-2,-21)$
11. 48 12. $\underline{96}$ and $\underline{100}$ [1990 ARML, Team \#7] 13. $\underline{13}$ [adapted from 2000 AMC, \#12]
14. 10 [1994 ARML, Team \#1]
15. 35 [1999 AHSME, \#30] HINT: Set $s=m+n$ so that $s^{3}=(m+n)^{3}=m^{3}+n^{3}+3 m n(m+n)$ And subtract the given equation from this equation. After factoring, replace s with $m+n$. Good Luck!

TEAM ROUND - 20 MINUTES

1. The number $\left(9^{6}+1\right)$ is the product of three primes. Compute the largest of these 3 primes.
2. Of the integers between 1 and 2310 , how many are divisible by exactly three of the five primes $2,3,5,7$, and 11 .
3. If x and y are positive integers such that $x^{2}=y^{2}+61$, find $x(x+2)+y(y+3)$.
4. The graph of $x y+3 x+2 y=0$ can be produced by translating the graph of $y=k / x$ to the left and down for some constant value k. Find k.
5. Let $f(x)=x^{2}+b x+9$ and $g(x)=x^{2}+d x+e$. If $f(x)$ has zeroes r and s, and $g(x)$ has zeroes $-r$ and $-s$, compute the two roots of $f(x)+g(x)=0$.
6. How many ordered pairs of integers (x, y) with $1 \leq x \leq 100$ and $1 \leq y \leq 100$ make the quantity $x y-x-y$ a multiple of 5 ?
7. If three of the roots of $x^{4}+a x^{2}+b x+c=0$ are 1,2 , and 3 , find the value of $a+c$.
8. x and y are real numbers that satisfy equations $x-y=1$ and $x^{5}-y^{5}=2016$. Calculate $\frac{x^{5}+y^{5}}{x+y}-\left(x^{4}+y^{4}\right)$
9. How many ordered pairs of positive integers (a, b) are that such that $\frac{1}{a}-\frac{1}{b}=\frac{1}{143}$?
10. Suppose that a, b, c, d are real numbers such that: $a b+3 a+3 b=216 ; b c+3 b+3 c=96$; and $c d+3 c+3 d=40$. Determine the maximum possible value of ad $+3 a+3 d$.

ANSWERS TO TEAM ROUND

If need assistance in the solutions of any of these problems, please email me at rickarmstrongpi@gmail.com or ask friends or a math teacher. Rick Armstrong

1. 6481 [1992 NYSML, Team \#5]
2. 186 [mathleague.org 11207, Large Team \#4]
3. 2013 [mathleague.org 11607, Team \#2]
4. 6 [mathleague.org 11301, Sprint \#10]
5. $\pm 3 i \quad$ [1991 NYSML, Individual \#2]
6. 1600 [mathleague.org 11202, Large Team \#7]
7. -61 [AHSME 1966, \#30]
8. - 403 [mathleague.org 11607, Target \#6]
9. 4 [mathleague.org 11308, Sprint \#28]
10. 96 [mathleague.org 11307, Sprint \#11]
