1-1. Solve $\mathbf{2}^{16}=16^{x}$

1-2. Let $T=$ TNYWR. Regular hexagon ABCDEF has area T. What is the area of triangle $A C E$?

1-3. Let $T=$ TNYWR. A regular hexagon is inscribed in a circle of radius T. Six semi-circles are drawn exterior to the hexagon such that each edge of the hexagon is a diameter of a semi-circle. What is the area of the "flower pattern" formed by the union of the hexagon and the six semi-circles?

1-1. Solve $\mathbf{2}^{16}=16^{\mathrm{x}}$

1-2. Let $T=T N Y W R$. Regular hexagon ABCDEF has area T. What is the area of triangle $A C E$?

1-3. Let $T=$ TNYWR. A regular hexagon is inscribed in a circle of radius T. Six semi-circles are drawn exterior to the hexagon such that each edge of the hexagon is a diameter of a semi-circle. What is the area of the "flower pattern" formed by the hexagon and the six semi-circles?

2-1 Compute: $\log 4^{2^{5}}+\log 5^{4^{3}}$

2-2 Let $T=T N Y W R$. The point $(32, T)$ is on a square whose four vertices are on the axes. If the side of the square equals $\mathbf{b} \sqrt{\mathbf{2}}$, compute \mathbf{b}.

2-3 Let $T=T N Y W R$. Let $R=T / 4$. For a certain value of n, the expressions $3 n^{2}+4 n-R$ and $2 n^{2}+3 n-R+56$ equal the same prime number p. What is p ?

2-1 Compute: $\log 4^{2^{5}}+\log 5^{4^{3}}$

2-2 Let $T=$ TNYWR. The point $(32, T)$ is on a square whose four vertices are on the axes. If the side of the square equals $\mathbf{b} \sqrt{\mathbf{2}}$, compute \mathbf{b}.

2-3 Let $T=T N Y W R$. Let $R=T / 4$. For a certain value of n, the expressions $3 n^{2}+4 n-R$ and $2 n^{2}+3 n-R+56$ equal the same prime number p. What is p ?

1-1. Solve $\mathbf{2}^{16}=16^{\boldsymbol{x}}$

1-2. Let $T=$ TNYWR. Regular hexagon $A B C D E F$ has area T. What is the area of triangle $A C E$?
1-3. Let $T=$ TNYWR. A regular hexagon is inscribed in a circle of radius T. Six semi-circles are drawn exterior to the hexagon such that each edge of the hexagon is a diameter of a semi-circle. What is the area of the "flower pattern" formed by the hexagon and the six semi-circles?

ANSWERS:

1-1. $x=4$
1-2. $[A C E]=2$
1-3. $[$ flower $]=6 \sqrt{3}+3 \pi$

2-1 Compute: $\log 4^{2^{5}}+\log 5^{4^{3}}$
2-2 Let $T=T N Y W R$. The point $(32, T)$ is on a square whose four vertices are on the axes. If the side of the square equals $\mathbf{b} \sqrt{\mathbf{2}}$, compute \mathbf{b}.

2-3 Let $T=T N Y W R$. Let $R=T / 4$. For a certain value of n, the expressions $3 n^{2}+4 n-R$ and $2 n^{2}+3 n-R+56$ equal the same prime number p. What is p ?

ANSWERS:

2-1. 64
2-2. 96
2-3. 151

