
\qquad

1. Noting that 2457 can be found to be divisible by 9 by a standard shortcut, discover a property of the mod 9 relation using the numbers 392,775 , and 9201 . Prove it.
2. Find: a] $14648 \bmod 11$ b] $64 \bmod \left(2^{0}+2^{1}+2^{2}+2^{3}+2^{4}+2^{5}\right)$.
3. If $x \equiv 500(\bmod 17)$, find the smallest prime solution greater than 2000.
4. When n is divided by 5 , the remainder is 1 . What is the remainder when $7 n$ is divided by 5 ?
5. Solve for x if $1233 x+45 \equiv 9090(\bmod 24)$.
6. Find x if $x \equiv 6^{1000}(\bmod 23)$.
7. Use the Euclidean algorithm to find $\operatorname{GCD}(1529,14039)$.
8. Find x if $3 x \equiv 4(\bmod 7)$.
9. Find x if $4 x \equiv 5(\bmod 8)$.
10. What is the square root of $5 \bmod 61$?
11. Find all integral solutions to $x^{2}+y^{2}=1000003$.
12. Prove: $(m+1)^{2} \equiv(m-1)^{2}(\bmod 2 m), m \in \boldsymbol{Z}$.
13. Find the smallest value for x if $7^{x} \equiv 1(\bmod 18)$.
14. What is the size of the largest subset S of $\{1,2,3, \ldots, 50\}$, such that no pair of distinct elements of S has a sum divisible by 7 ?
15. Prove: if $\underline{a b c} \equiv 0(\bmod 19)$, then $\mathrm{cba}_{2} \equiv 0(\bmod 19)$.
16. Prove: $(1+4 x)^{2} \equiv 1+8 x^{2}(\bmod 2), x \in Z$.
17. Find the smallest x in \boldsymbol{Z}^{+}such that it has a remainder of 9 when divided by 10 , a remainder of 8 when divided by 9 , a remainder of 7 when divided by $8, \ldots$, and a remainder of 1 when divided by 2 .
18. If $x \equiv 5(\bmod 7)$, then what is $1 / x$ congruent to $\bmod 7$?
19. What is the other factor k which satisfies $k(x-2) \equiv 5 x^{3}+x^{2}+5 x+2(\bmod 7)$?
20. Find the smallest x in \boldsymbol{Z}^{+}such that $x \equiv 3(\bmod 11)$ and $x \equiv 5(\bmod 6)$.
21. Solve for x if $14 x \equiv 10(\bmod 12)$.
22. Solve for x if $x \equiv 4(\bmod 5), x \equiv 7(\bmod 8)$, and $x \equiv 3(\bmod 9)$.
23. Compute the date for Easter in 2020.
