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TOPIC 1:  Modular Basics 
 
In base conversions, the units digit represents the number remaining after all positive multiples of the base 
have been found. 
 
Example 1:   When converting 27 from base 10 to base 4, have  2710  =  1234 , or 1 · 42 + 2 · 4 + 3.   The 3 
remaining can also be represented in modular form as  27 ≡ 3 (mod 4).   [parentheses optional] 
 

Integer division and modules:   An integer, a, can be divided up into k equal positive parts of a 
given size, m, or modulus, with a remainder, r, resulting from this modular division.   This 
relationship is  a = r + km.   When using the modulo function, the result r is an integer between 0 
and m – 1, inclusive. 

 
Modular notation can be used in 2 ways:  as a function which produces a nonnegative integer less than the 
modulus;  or as a relation describing two or more equivalent, or congruent, numbers under that modulus. 
 
Example 2:   Find an x for:  a]   x  =  203 mod 11     b]   x  ≡  203 (mod 11) 
 Solutions:   a]   x  =  5     b]   x  ≡  5, or 16, or 27, or … all under modulo 11.   In fact, x is any Z in 
the set {…, -17, -6, 5, 16, …}  or   {x: x  =  5 + 11k, k ∈	 Z}, called the congruence class of  203 mod 11. 
 

Example 3:   Convert 495 to base 7, then find  495 mod 7. 
 
TOPIC 2:  Properties of Modular Congruences 
 
 If  a  ≡  b (mod m)  and  c > 0,  then: 
1)   a + c  ≡  b + c (mod m)    2)   a – c  ≡  b – c (mod m) 
3)   a c  ≡  b c (mod m)    4)   ac  ≡  bc (mod m) 
5)   (a + b) mod m  ≡  a mod m  +  b mod m  6)   (a b) mod m  ≡  a mod m  ·  b mod m 
7)   If  a  ≡  b (mod m)  and  c  ≡  d (mod m)  then  a + c  ≡  b + d (mod m) 
8)   The modular inverse of a,  a-1, produces   a mod m   à   a a-1  ≡  1 (mod m)   
 

9)   About division:  When a c  ≡  b c (mod m), then a  ≡  b (mod m)  iff  (m, c) = 1 (the GCD).   In other 
words, m and c must be relatively prime.   Otherwise, if a c  ≡  b c (mod m), then a  ≡  b (mod [m)/(m, c)]), 
where m is divided by the GCD of m and c.   These solutions should be checked in the original congruence. 
 
TOPIC 3:  Modular Congruence Theorems 
 
Theorem 1 (Fermat’s Little Theorem):   If p is prime, then  a p – 1  ≡  1 (mod p)  for all a in Z 
 (or  a p  ≡  a (mod p) ). 
 
 

Theorem 2 (Wilson’s Theorem):   If p is prime, then  (p – 1)!  ≡  -1 (mod p). 
 
 

Theorem 3 (‘Binomial Modulation’ Theorem):   If p is prime, then  (a + b) p  ≡  a p + b p (mod p). 
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Theorem 4:   If (m, a) = 1, then  a c  ≡  b (mod m)  can be solved for c, for any value of b. 
 
 

Theorem 5:   If p is prime and  p  ≡  1 (mod 4),  then the square root of  -1 mod p  has an integral solution.   
But if  p  ≡  3 (mod 4), then there is no square root of  -1 mod p. 
 
Example 4:   For  -1 mod 13,  12  ≡  -1 (mod 13), but not a square; however, 25  =  52  ≡  -1 (mod 13), so 5 
is a square root of  -1 mod 13. 
 
 

Theorem 6:   For the form  x2 + y2  =  n,  if n is prime and n  ≡  1 (mod 4), then there exists an integral 
solution (x, y).   [If  n  ≡  3 (mod 4),  then there is generally no solution.] 
 
Example 5:   Find positive integers x and y so that  x2 + y2  =  29.   

Solution:   29 is prime and 29  ≡  1 (mod 4);   since 122  =  144  ≡  -1 (mod 29), then 12 is a square 
root of -1 mod 29  [and so are 17, 41, 46, 70, 75, …];   hence, x2 + y2  =  (x + 12y)(x – 12y)  ≡  0 (mod 29)  
à    x  ≡  ±12y (mod 29);   trying cases: if y = 1, then  [x  ≡  12  or  x  ≡  -12  ≡  17] (mod 29) – no good;  if 
y = 2, then [x  ≡  24  or  x  ≡  -24  ≡  5] (mod 29) – really good, since  52 + 22  =  29;   so,  x = 5 and y = 2. 
 
 

Theorem 7 (Chinese Remainder Theorem):   Let m1, m2, …, mn  be pairwise relatively prime integers; 
then the system of linear congruences:    x  ≡  b1 (mod m1),    x  ≡  b2 (mod m2),    …,    x  ≡  bn (mod mn)    
has a unique solution for x in  mod(m1 · m2 · … · mn ). 
 
Example 6:   Solve for x, if   x  ≡  2 (mod 3),   x  ≡  3 (mod 5),  and  x  ≡  2 (mod 7).   

Solution:  Find  LCM(3, 5, 7) = 105;    then find a multiple of the excluded modulos for each 
equation that satisfies x:  for eq1, have 5 · 7 = 35, and  x ≡ 35 ≡ 2 (mod 3) works;   for eq2, have 3 · 7 = 21, 
and  x ≡ 63 ≡ 3 (mod 5) works;    for eq3, have 3 · 5 = 15, and  x ≡ 30 ≡ 2 (mod 7) works;    finally, add the 
selected multiples:  21 + 63 + 30  =  128, and the solutions are   x  =  128 + 105k,  k ∈	Z . 
 
 

Theorem 8 (Gauss’ Easter Formula - corrected):   While Easter always falls on the first Sunday after the 
first full moon in the spring, it was left to Gauss to find a formula to calculate the date: 
 a  =  year mod 19   b  =  year mod 4   c  =  year mod 7 
  d  =  (19a + 24) mod 30   e  =  (2b + 4c + 6d + 5) mod 7 
This indicates that Easter will fall on   March (22 + d + e)   or   April (d + e – 9).   [Don’t blame Gauss; this was 
all the Catholic church’s doing.] 
 
 

Example 7:   Find GCD(91, 287).   
Solution:  We can apply the Euclidean algorithm, which uses a repeated modular reduction until 

zero is reached, as follows:   287 mod 91  =  14   à    91 mod 14  =  7   à    14 mod 7  =  0;   since 7 is 
the last non-zero remainder, GCD(91, 287)  =  7. 
 
 

Theorem 9 (Bezout’s Theorem):   For a and b in Z +, there exist s and t in Z such that  (a, b)  =  s a  +  t b. 
 
Example 8:   Find a linear combination for GCD(648, 198). 

Solution:  by reduction:  648  =   3 · 198 + 54   à   198  =   3 · 54 + 36   à   54  =   1 · 36 + 18   à   
36  =   2 · 18 + 0;   then working backwards through the first three equations above:    18   =   54 – 1 · 36   
=   54 – 1(198 – 3 · 54)   =    -1 · 198 + 4· 54   =   -1 · 198 + 4(648 – 3 · 198)   =   4 · 648 – 13 · 198;  so, 
one possible combination is  18  =   4 · 648 – 13 · 198.  [another is  18  =   15 · 648 – 49 · 198.] 
 
 
 

 
APPLICATIONS:  Checking accuracy of ISBN book #s and bank account #s;   public key systems in cryptography;   proper 
and efficient apportionment in law, economics, and other social sciences;   in music, for efficient distribution of sound in closed 
spaces, as in concert halls;   in computer science, for efficient polynomial calculations to speed up programs;   etc. 


