

MO-ARML Modular Mathematics Properties & Examples

TOPIC 1: Modular Basics

In *base conversions*, the units digit represents the number remaining after all positive multiples of the base have been found.

Example 1: When converting 27 from base 10 to base 4, have $27_{10} = 123_4$, or $1 \cdot 4^2 + 2 \cdot 4 + 3$. The 3 remaining can also be represented in modular form as $27 \equiv 3 \pmod{4}$. [parentheses optional]

Integer division and modules: An integer, a, can be divided up into k equal positive parts of a given size, m, or **modulus**, with a remainder, r, resulting from this modular division. This relationship is a = r + km. When using the **modulo function**, the result r is an integer between 0 and m - 1, inclusive.

Modular notation can be used in 2 ways: as a <u>function</u> which produces a nonnegative integer less than the modulus; or as a <u>relation</u> describing two or more equivalent, or *congruent*, numbers under that modulus.

Example 2: Find an x for: **a**] $x = 203 \mod 11$ **b**] $x \equiv 203 \pmod{11}$ <u>Solutions</u>: **a**] x = 5 **b**] $x \equiv 5$, or 16, or 27, or ... all under modulo 11. In fact, x is any Z in the set {..., -17, -6, 5, 16, ...} or { $x: x = 5 + 11k, k \in \mathbb{Z}$ }, called the *congruence class* of 203 mod 11.

Example 3: Convert 495 to base 7, then find 495 mod 7.

TOPIC 2: Properties of Modular Congruences

	If $a \equiv b \pmod{m}$ and $c > 0$, then:		
1)	$a + c \equiv b + c \pmod{m}$	2) $a-c \equiv b-c \pmod{m}$	
3)	$a c \equiv b c \pmod{m}$	4) $a^c \equiv b^c \pmod{m}$	
5)	$(a+b) \bmod m \equiv a \bmod m + b \bmod m$	6) $(a b) \mod m \equiv a \mod m \cdot b \mod d$	т
7)	If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$ the	$a + c \equiv b + d \pmod{m}$	
8)	The <i>modular inverse</i> of a , a^{-1} , produces a	$mod m \rightarrow a a^{-1} \equiv 1 \pmod{m}$	

9) About division: When $a c \equiv b c \pmod{m}$, then $a \equiv b \pmod{m}$ iff (m, c) = 1 (the GCD). In other words, *m* and *c* must be *relatively prime*. Otherwise, if $a c \equiv b c \pmod{m}$, then $a \equiv b \pmod{[m]/(m, c)]}$, where *m* is divided by the GCD of *m* and *c*. These solutions should be checked in the original congruence.

TOPIC 3: Modular Congruence Theorems

Theorem 1 (Fermat's Little Theorem): If p is prime, then $a^{p-1} \equiv 1 \pmod{p}$ for all a in Z (or $a^p \equiv a \pmod{p}$).

Theorem 2 (Wilson's Theorem): If p is prime, then $(p-1)! \equiv -1 \pmod{p}$.

Theorem 3 ('Binomial Modulation' Theorem): If p is prime, then $(a + b)^p \equiv a^p + b^p \pmod{p}$.

Name

Theorem 4: If (m, a) = 1, then $a c \equiv b \pmod{m}$ can be solved for *c*, for any value of *b*.

Theorem 5: If p is prime and $p \equiv 1 \pmod{4}$, then the square root of $-1 \mod p$ has an integral solution. But if $p \equiv 3 \pmod{4}$, then there is no square root of $-1 \mod p$.

Example 4: For $-1 \mod 13$, $12 \equiv -1 \pmod{13}$, but not a square; however, $25 \equiv 5^2 \equiv -1 \pmod{13}$, so 5 is a square root of $-1 \mod 13$.

Theorem 6: For the form $x^2 + y^2 = n$, if *n* is prime and $n \equiv 1 \pmod{4}$, then there exists an integral solution (x, y). [If $n \equiv 3 \pmod{4}$, then there is generally no solution.]

Example 5: Find positive integers x and y so that $x^2 + y^2 = 29$.

Solution: 29 is prime and $29 \equiv 1 \pmod{4}$; since $12^2 = 144 \equiv -1 \pmod{29}$, then 12 is a square root of -1 mod 29 [and so are 17, 41, 46, 70, 75, ...]; hence, $x^2 + y^2 = (x + 12y)(x - 12y) \equiv 0 \pmod{29}$ $\Rightarrow x \equiv \pm 12y \pmod{29}$; trying cases: if y = 1, then $[x \equiv 12 \text{ or } x \equiv -12 \equiv 17] \pmod{29}$ – no good; if y = 2, then $[x \equiv 24 \text{ or } x \equiv -24 \equiv 5] \pmod{29}$ – really good, since $5^2 + 2^2 = 29$; so, x = 5 and y = 2.

Theorem 7 (Chinese Remainder Theorem): Let $m_1, m_2, ..., m_n$ be pairwise relatively prime integers; then the system of linear congruences: $x \equiv b_1 \pmod{m_1}$, $x \equiv b_2 \pmod{m_2}$, ..., $x \equiv b_n \pmod{m_n}$ has a unique solution for x in $mod(m_1 \cdot m_2 \cdot ... \cdot m_n)$.

Example 6: Solve for x, if $x \equiv 2 \pmod{3}$, $x \equiv 3 \pmod{5}$, and $x \equiv 2 \pmod{7}$.

Solution: Find LCM(3, 5, 7) = 105; then find a multiple of the excluded modulos for each equation that satisfies x: for eq1, have $5 \cdot 7 = 35$, and $x \equiv 35 \equiv 2 \pmod{3}$ works; for eq2, have $3 \cdot 7 = 21$, and $x \equiv 63 \equiv 3 \pmod{5}$ works; for eq3, have $3 \cdot 5 = 15$, and $x \equiv 30 \equiv 2 \pmod{7}$ works; finally, add the selected multiples: 21 + 63 + 30 = 128, and the solutions are x = 128 + 105k, $k \in \mathbb{Z}$.

Theorem 8 (Gauss' Easter Formula - *corrected***):** While Easter always falls on the first Sunday after the first full moon in the spring, it was left to Gauss to find a formula to calculate the date:

 $a = year \mod 19$ $b = year \mod 4$ $c = year \mod 7$ $d = (19a + 24) \mod 30$ $e = (2b + 4c + 6d + 5) \mod 7$ This indicates that Easter will fall on March (22 + d + e) or April (d + e - 9). [Don't blame Gauss; this was all the Catholic church's doing.]

Example 7: Find GCD(91, 287).

Solution: We can apply the Euclidean algorithm, which uses a repeated modular reduction until zero is reached, as follows: $287 \mod 91 = 14 \rightarrow 91 \mod 14 = 7 \rightarrow 14 \mod 7 = 0$; since 7 is the last non-zero remainder, GCD(91, 287) = 7.

Theorem 9 (Bezout's Theorem): For a and b in Z^+ , there exist s and t in Z such that (a, b) = sa + tb.

Example 8: Find a linear combination for GCD(648, 198).

Solution: by reduction: $648 = 3 \cdot 198 + 54 \rightarrow 198 = 3 \cdot 54 + 36 \rightarrow 54 = 1 \cdot 36 + 18 \rightarrow 36 = 2 \cdot 18 + 0$; then working backwards through the first three equations above: $18 = 54 - 1 \cdot 36 = 54 - 1(198 - 3 \cdot 54) = -1 \cdot 198 + 4 \cdot 54 = -1 \cdot 198 + 4(648 - 3 \cdot 198) = 4 \cdot 648 - 13 \cdot 198$; so, one possible combination is $18 = 4 \cdot 648 - 13 \cdot 198$. [another is $18 = 15 \cdot 648 - 49 \cdot 198$.]

APPLICATIONS: Checking accuracy of ISBN book #s and bank account #s; public key systems in cryptography; proper and efficient apportionment in law, economics, and other social sciences; in music, for efficient distribution of sound in closed spaces, as in concert halls; in computer science, for efficient polynomial calculations to speed up programs; etc.