\qquad

TOPIC 1: Modular Basics

In base conversions, the units digit represents the number remaining after all positive multiples of the base have been found.

Example 1: When converting 27 from base 10 to base 4, have $27_{10}=123_{4}$, or $1 \cdot 4^{2}+2 \cdot 4+3$. The 3 remaining can also be represented in modular form as $27 \equiv 3(\bmod 4)$. [parentheses optional]

Integer division and modules: An integer, a, can be divided up into k equal positive parts of a given size, m, or modulus, with a remainder, r, resulting from this modular division. This relationship is $a=r+k m$. When using the modulo function, the result r is an integer between 0 and $m-1$, inclusive.

Modular notation can be used in 2 ways: as a function which produces a nonnegative integer less than the modulus; or as a relation describing two or more equivalent, or congruent, numbers under that modulus.

Example 2: Find an x for: a] $x=203 \bmod 11 \quad$ b] $x \equiv 203(\bmod 11)$
Solutions: a] $x=5 \quad$ b] $x \equiv 5$, or 16 , or 27 , or \ldots all under modulo 11 . In fact, x is any \boldsymbol{Z} in the set $\{\ldots,-17,-6,5,16, \ldots\}$ or $\{x: x=5+11 k, k \in Z\}$, called the congruence class of $203 \bmod 11$.

Example 3: Convert 495 to base 7, then find $495 \bmod 7$.

TOPIC 2: Properties of Modular Congruences

If $a \equiv b(\bmod m)$ and $c>0$, then:

1) $a+c \equiv b+c(\bmod m)$
2) $a-c \equiv b-c(\bmod m)$
3) $a c \equiv b c(\bmod m)$
4) $a^{c} \equiv b^{c}(\bmod m)$
5) $(a+b) \bmod m \equiv a \bmod m+b \bmod m$
6) $(a b) \bmod m \equiv a \bmod m \cdot b \bmod m$
7) If $a \equiv b(\bmod m)$ and $c \equiv d(\bmod m)$ then $a+c \equiv b+d(\bmod m)$
8) The modular inverse of a, a^{-1}, produces $a \bmod m \rightarrow a a^{-1} \equiv 1(\bmod m)$
9) About division: When $a c \equiv b c(\bmod m)$, then $a \equiv b(\bmod m)$ iff $(m, c)=1$ (the GCD). In other words, m and c must be relatively prime. Otherwise, if $a c \equiv b c(\bmod m)$, then $a \equiv b(\bmod [m) /(m, c)])$, where m is divided by the GCD of m and c. These solutions should be checked in the original congruence.

TOPIC 3: Modular Congruence Theorems

Theorem 1 (Fermat's Little Theorem): If p is prime, then $a^{p-1} \equiv 1(\bmod p)$ for all a in \boldsymbol{Z} (or $a^{p} \equiv a(\bmod p)$).

Theorem 2 (Wilson's Theorem): If p is prime, then $(p-1)!\equiv-1(\bmod p)$.
Theorem 3 ('Binomial Modulation' Theorem): If p is prime, then $(a+b)^{p} \equiv a^{p}+b^{p}(\bmod p)$.

Theorem 4: If $(m, a)=1$, then $a c \equiv b(\bmod m)$ can be solved for c, for any value of b.
Theorem 5: If p is prime and $p \equiv 1(\bmod 4)$, then the square root of $-1 \bmod p$ has an integral solution. But if $p \equiv 3(\bmod 4)$, then there is no square root of $-1 \bmod p$.

Example 4: For $-1 \bmod 13,12 \equiv-1(\bmod 13)$, but not a square; however, $25=5^{2} \equiv-1(\bmod 13)$, so 5 is a square root of $-1 \bmod 13$.

Theorem 6: For the form $x^{2}+y^{2}=n$, if n is prime and $n \equiv 1(\bmod 4)$, then there exists an integral solution (x, y). [If $n \equiv 3(\bmod 4)$, then there is generally no solution.]

Example 5: Find positive integers x and y so that $x^{2}+y^{2}=29$.
Solution: 29 is prime and $29 \equiv 1(\bmod 4)$; since $12^{2}=144 \equiv-1(\bmod 29)$, then 12 is a square root of $-1 \bmod 29$ [and so are $17,41,46,70,75, \ldots]$; hence, $x^{2}+y^{2}=(x+12 y)(x-12 y) \equiv 0(\bmod 29)$ $\rightarrow \quad x \equiv \pm 12 y(\bmod 29)$; trying cases: if $y=\mathbf{1}$, then $[x \equiv 12$ or $x \equiv-12 \equiv 17](\bmod 29)-$ no good; if $y=2$, then $[x \equiv 24$ or $x \equiv-24 \equiv 5](\bmod 29)-$ really good, since $5^{2}+2^{2}=29 ;$ so, $x=5$ and $y=2$.

Theorem 7 (Chinese Remainder Theorem): Let $m_{1}, m_{2}, \ldots, m_{n}$ be pairwise relatively prime integers; then the system of linear congruences: $\quad x \equiv b_{1}\left(\bmod m_{1}\right), \quad x \equiv b_{2}\left(\bmod m_{2}\right), \quad \ldots, \quad x \equiv b_{n}\left(\bmod m_{n}\right)$ has a unique solution for x in $\bmod \left(m_{1} \cdot m_{2} \cdot \ldots \cdot m_{n}\right)$.

Example 6: Solve for x, if $x \equiv 2(\bmod 3), x \equiv 3(\bmod 5)$, and $x \equiv 2(\bmod 7)$.
Solution: Find $\operatorname{LCM}(3,5,7)=105$; then find a multiple of the excluded modulos for each equation that satisfies x : for eq1, have $5 \cdot 7=35$, and $x \equiv 35 \equiv 2(\bmod 3)$ works; for eq 2 , have $3 \cdot 7=21$, and $x \equiv 63 \equiv 3(\bmod 5)$ works; for eq3, have $3 \cdot 5=15$, and $x \equiv 30 \equiv 2(\bmod 7)$ works; finally, add the selected multiples: $21+63+30=128$, and the solutions are $x=128+105 k, k \in \boldsymbol{Z}$.

Theorem 8 (Gauss' Easter Formula - corrected): While Easter always falls on the first Sunday after the first full moon in the spring, it was left to Gauss to find a formula to calculate the date:

$$
\begin{array}{cc}
a=\text { year } \bmod 19 & b=\text { year } \bmod 4
\end{array} c=\text { year } \bmod 77
$$

This indicates that Easter will fall on March $(22+d+e)$ or April $(d+e-9)$. [Don't blame Gauss; this was all the Catholic church's doing.]

Example 7: Find $\operatorname{GCD}(91,287)$.
Solution: We can apply the Euclidean algorithm, which uses a repeated modular reduction until zero is reached, as follows: $287 \bmod 91=14 \rightarrow 91 \bmod 14=7 \rightarrow 14 \bmod 7=0$; since 7 is the last non-zero remainder, $\operatorname{GCD}(91,287)=7$.

Theorem 9 (Bezout's Theorem): For a and b in \boldsymbol{Z}^{+}, there exist s and t in \boldsymbol{Z} such that $(a, b)=s a+t b$.
Example 8: Find a linear combination for $\operatorname{GCD}(648,198)$.
Solution: by reduction: $648=3 \cdot 198+54 \rightarrow 198=3 \cdot 54+36 \rightarrow 54=1 \cdot 36+18 \rightarrow$ $36=2 \cdot \mathbf{1 8}+0$; then working backwards through the first three equations above: $18=54-1 \cdot 36$ $=54-1(198-3 \cdot 54)=-1 \cdot 198+4 \cdot 54=-1 \cdot 198+4(648-3 \cdot 198)=4 \cdot 648-13 \cdot 198$; so, one possible combination is $18=\mathbf{4} \cdot 648-\mathbf{1 3} \cdot 198$. [another is $18=\mathbf{1 5} \cdot 648-\mathbf{4 9} \cdot 198$.]

[^0]
[^0]: APPLICATIONS: Checking accuracy of ISBN book \#s and bank account \#s; public key systems in cryptography; proper and efficient apportionment in law, economics, and other social sciences; in music, for efficient distribution of sound in closed spaces, as in concert halls; in computer science, for efficient polynomial calculations to speed up programs; etc.

