

MO-ARML

Name _

Modular Worksheet Hints, Answers or Solutions

- 1. [each sum pretty much sums it up]
- 2. **a**] 7 [11⁴ is ?]

- **b**] [patterns in base 2]
- 3. 2081 [adding on 510 3 times gets you to 2030, but be careful about checking factors]
- 4. $\boxed{2}$ [if $n \equiv 1 \pmod{5}$, then $7n = 7 \cdot 1 = 7 \equiv 2 \pmod{5}$]
- 5. $1233x \equiv 9045 \pmod{24} \Rightarrow (1224 + 9)x \equiv (9024 + 21) \pmod{24} \Rightarrow 9x \equiv 21 \pmod{24} \Rightarrow 3x \equiv 7 \equiv 15 \pmod{8}$ [risky division] $\Rightarrow x \equiv 5 \pmod{8} \Rightarrow \boxed{x \in \{..., 5, 13, ...\}} \sqrt{}$
- 6. $6^{23} \equiv 6 \pmod{23} \rightarrow 6^{22} \equiv 1 \pmod{23} \rightarrow \text{ since } 6^{990} \equiv (6^{22})^{45} \equiv 1 \pmod{23} \rightarrow 6^{1000} = 6^{990} \cdot 6^{10} \equiv 6^{10} = 7776^2 \equiv 2^2 = 4 \pmod{23} \rightarrow \boxed{x \in \{..., 4, 27, ...\}}$
- 7. $14039 = 9 \cdot 1529 + 278 \Rightarrow 1529 = 5 \cdot 278 + 139 \Rightarrow 278 = 2 \cdot 139 + 0 \Rightarrow (14039, 1529) = \boxed{139}$
- 8. $6 + 7k, k \in \mathbb{Z}$
- 9. Ø
- 10. $5 \equiv (5 + 610 + 61) \equiv 676 \equiv 26^2 \pmod{61}$; square root is 26 or 26 + 61k or 35 + 61k, $k \in \mathbb{Z}$
- 11. Since $1000003 \equiv 3 \pmod{4}$,
- 12. [expand]
- 13. by trial-and-error, 7^o, 7¹, 7², 7³, 7⁴ and 7⁵ don't work, but 7⁶ does; so 6
- 14. partition S into subsets: $x \equiv 0 \pmod{7}$, $x \equiv 1 \pmod{7}$, $x \equiv 2 \pmod{7}$, ..., $x \equiv 6 \pmod{7}$, including all remainders under mod 7; considering $x \equiv 3 \pmod{7}$ and $x \equiv 4 \pmod{7}$, their sums are always 7, so discard one; for each of 1 to 50, from $x \equiv 0 \pmod{7}$, $x \equiv 1 \pmod{7}$, $x \equiv 2 \pmod{7}$, $x \equiv 3 \pmod{7}$, we can choose $1 + 8 + 7 + 7 = \boxed{23}$
- 15. using mod 19: $a \cdot 100 + b \cdot 10 + c \equiv 4(a \cdot 100 + b \cdot 10 + c) \equiv a \cdot 20 \cdot 20 + b \cdot 2 \cdot 20 + c \cdot 4 \equiv 4c + 2b + a \equiv \frac{\text{cba}_2 \pmod{19}}{2}$ QED
- 16. [expand and consider each term]
- 17. 2519 [if starting with factorial, watch for unneeded factors]
- 18. since want inverse of x, need $x \cdot 1/x = 1 \equiv 15 = 3 \cdot 5 \pmod{7}$, so 1/x = 3
- 19. $5x^2 + 4x + 6$ [use polynomial division under mod 7]
- 20. [using CRT, valid excluded multiples yield 36 + 11 = 47] $\boxed{47}$
- 21. $14x \equiv 2x \equiv 10 \pmod{12} \rightarrow x \equiv 5 \pmod{6}$ [risky division] $\rightarrow \boxed{5+6k, k \in \mathbb{Z}}$ $\sqrt{$
- 22. [using CRT again, valid excluded multiples yield 144 + 135 + 120 = 399] $\boxed{39 + 360k, k \in \mathbb{Z}}$
- 23. Sunday, April 12, 2020