Rigidity of Convex Polyhedra

03/01/2020

1 Heron's formula

Problem 1

If the three sides of a triangle $\triangle ABC$ have lengths 3cm, 4cm, 5cm, find the area of $\triangle ABC$.

Problem 2

If the three sides of a triangle $\triangle ABC$ have lengths 4cm, 4cm, 2cm, find the area of $\triangle ABC$.

Problem 3

If the three sides of a triangle $\triangle ABC$ have lengths AB = 5cm, BC = 6cm, CA = 7cm, find the $\cos \angle ABC$.

Problem 4

If the three sides of a triangle $\triangle ABC$ have lengths AB = 5cm, BC = 6cm, CA = 7cm, find the area of $\triangle ABC$.

Problem 5

If the three sides of a triangle $\triangle ABC$ have lengths AB = c, BC = a, CA = b,

- 1. Find a formula of $\cos \angle ABC$ in term of a, b, c.
- 2. Find a formula of the area of $\triangle ABC$ in term of a, b, c.

2 Euler's formula

A graph G is planar if it can be drawn in the plane \mathbb{R}^2 without crossing edges. A graph is simple if there is no multiple edges or loops.

Problem 6

- 1. Draw a simple planar graph with 5 vertices, 10 edges.
- 2. Can you draw a simple planar graph with 5 vertices, 6 edges?

Euler's formula. If G is a connected plane graph with n vertices, e edges, and f faces, then

n - e + f = 2.

The **degree** of a vertex is the number of edges that end in the vertex, where loops count double. Let n_i denote the number of vertices of degree i in a graph.

Problem 7

Show that for any planar graph G,

 $2e = n_1 + 2n_2 + 3n_3 + 4n_4 + \cdots$

A k-face is a face that is bounded by k edges. Let f_k be the number of k-faces of a planar graph G.

Problem 8

Show that for any planar graph G,

$$2e = f_1 + 2f_2 + 3f_3 + 4f_4 + \cdots$$

Problem 9

Show that any simple planar graph G with n > 2 vertices has at most 3n - 6 edges.

Problem 10

Show that any simple planar graph G with n > 2 has a vertex of degree at most 5.

Problem 11

Show that if the edges of G are colored by 2 colors, there is vertex of G with at most two color-changes in the cyclic order of the edges around the vertex.

3 Cauchy's rigidity theorem

Problem 12

For $\triangle ABC$ and $\triangle A'B'C'$, if AB = A'B', BC = B'C', and $\angle ABC \leq \angle A'B'C'$, show that $BC \leq B'C'$.

Problem 13

If Q and Q' are convex *n*-gons, labeled as in the following figure such that $q_i q_{i+1} = q'_i q'_{i+1}$ holds for the lengths of corresponding edges for $1 \le i \le n-1$, and $\alpha_i \le \alpha'_i$ holds for the sizes of corresponding angels for $2 \le i \le n-1$, then the "missing" edge length satisfies

 $q_1 q_n \le q_1' q_n',$

with equality if and only if $\alpha_i = \alpha'_i$ holds for all *i*.

Problem 14

Prove the above property for spherical convex n-gons.

A **polyhedron** is a solid in three dimension with flat polygonal faces, straight edges and sharp corners or vertices.

A convex polyhedron is the convex hull of finitely many points.

Assumption: Assume that P and P' are two convex polyhedra. There is a one to one correspondence between the faces, edges, and vertices of Q and Q' such that corresponding pairs of faces are congruent.

Problem 15

We color the edges of P as follows: an edge is black if the corresponding interior angle between adjacent facets is larger in P' than in P it is white if the corresponding angle is smaller in P' than in P. Prove that if there is at least one pair of vertices v_1 and v'_1 in P and P' such that the edge angles are not all same, then is one vertex of v that have at most two changes between black and white edges (in cyclic order).

Problem 16

Look the vertex v and the corresponding v' of P'. Intersect P with a small sphere S_{ϵ} centered at the vertex v, and similarly intersect P' with a sphere S'_{ϵ} of the same radius. Find convex spherical polygons Q and Q' such that corresponding arcs have the same lengths.

Problem 17

Use Problem 15 and 16 to prove the Cauchy rigidity theorem which states that the two polyhedra must be congruent.