Rigidity of Convex Polyhedra

03/01/2020

1 Heron's formula

Problem 1

If the three sides of a triangle $\triangle A B C$ have lengths $3 \mathrm{~cm}, 4 \mathrm{~cm}, 5 \mathrm{~cm}$, find the area of $\triangle A B C$.

Problem 2

If the three sides of a triangle $\triangle A B C$ have lengths $4 \mathrm{~cm}, 4 \mathrm{~cm}, 2 \mathrm{~cm}$, find the area of $\triangle A B C$.

Problem 3

If the three sides of a triangle $\triangle A B C$ have lengths $A B=5 \mathrm{~cm}, B C=6 \mathrm{~cm}, C A=7 \mathrm{~cm}$, find the $\cos \angle A B C$.

Problem 4

If the three sides of a triangle $\triangle A B C$ have lengths $A B=5 \mathrm{~cm}, B C=6 \mathrm{~cm}, C A=7 \mathrm{~cm}$, find the area of $\triangle A B C$.

Problem 5

If the three sides of a triangle $\triangle A B C$ have lengths $A B=c, B C=a, C A=b$,

1. Find a formula of $\cos \angle A B C$ in term of a, b, c.
2. Find a formula of the area of $\triangle A B C$ in term of a, b, c.

2 Euler's formula

A graph G is planar if it can be drawn in the plane \mathbb{R}^{2} without crossing edges. A graph is simple if there is no multiple edges or loops.

Problem 6

1. Draw a simple planar graph with 5 vertices, 10 edges.
2. Can you draw a simple planar graph with 5 vertices, 6 edges?

Euler's formula. If G is a connected plane graph with n vertices, e edges, and f faces, then

$$
n-e+f=2
$$

The degree of a vertex is the number of edges that end in the vertex, where loops count double. Let n_{i} denote the number of vertices of degree i in a graph.

Problem 7

Show that for any planar graph G,

$$
2 e=n_{1}+2 n_{2}+3 n_{3}+4 n_{4}+\cdots
$$

A k-face is a face that is bounded by k edges. Let f_{k} be the number of k-faces of a planar graph G.

Problem 8

Show that for any planar graph G,

$$
2 e=f_{1}+2 f_{2}+3 f_{3}+4 f_{4}+\cdots
$$

Problem 9

Show that any simple planar graph G with $n>2$ vertices has at most $3 n-6$ edges.

Problem 10

Show that any simple planar graph G with $n>2$ has a vertex of degree at most 5 .

Problem 11

Show that if the edges of G are colored by 2 colors, there is vertex of G with at most two color-changes in the cyclic order of the edges around the vertex.

3 Cauchy's rigidity theorem

Problem 12

For $\triangle A B C$ and $\triangle A^{\prime} B^{\prime} C^{\prime}$, if $A B=A^{\prime} B^{\prime}, B C=B^{\prime} C^{\prime}$, and $\angle A B C \leq \angle A^{\prime} B^{\prime} C^{\prime}$, show that $B C \leq B^{\prime} C^{\prime}$.

Problem 13

If Q and Q^{\prime} are convex n-gons, labeled as in the following figure such that $q_{i} q_{i+1}=q_{i}^{\prime} q_{i+1}^{\prime}$ holds for the lengths of corresponding edges for $1 \leq i \leq n-1$, and $\alpha_{i} \leq \alpha_{i}^{\prime}$ holds for the sizes of corresponding angels for $2 \leq i \leq n-1$, then the " missing" edge length satisfies

$$
q_{1} q_{n} \leq q_{1}^{\prime} q_{n}^{\prime}
$$

with equality if and only if $\alpha_{i}=\alpha_{i}^{\prime}$ holds for all i.

Problem 14

Prove the above property for spherical convex n-gons.

A polyhedron is a solid in three dimension with flat polygonal faces, straight edges and sharp corners or vertices.

A convex polyhedron is the convex hull of finitely many points.
Assumption: Assume that P and P^{\prime} are two convex polyhedra. There is a one to one correspondence between the faces, edges, and vertices of Q and Q^{\prime} such that corresponding pairs of faces are congruent.

Problem 15

We color the edges of P as follows: an edge is black if the corresponding interior angle between adjacent facets is larger in P^{\prime} than in P it is white if the corresponding angle is smaller in P^{\prime} than in P. Prove that if there is at least one pair of vertices v_{1} and v_{1}^{\prime} in P and P^{\prime} such that the edge angles are not all same, then is one vertex of v that have at most two changes between black and white edges (in cyclic order).

Problem 16

Look the vertex v and the corresponding v^{\prime} of P^{\prime}. Intersect P with a small sphere S_{ϵ} centered at the vertex v, and similarly intersect P^{\prime} with a sphere S_{ϵ}^{\prime} of the same radius. Find convex spherical polygons Q and Q^{\prime} such that corresponding arcs have the same lengths.

Problem 17

Use Problem 15 and 16 to prove the Cauchy rigidity theorem which states that the two polyhedra must be congruent.

