
OF CATTLE AND CRYPTANALYSIS

I. THE COWS OF THE MOON

Much has been written about the “Cattle of the Sun”, a counting problem due to
Archimedes which ends up with about 7 × 10206,545 cows grazing on a field in Sicily.
Far less known is the herd that, once upon a time, devoured all the fields on the
moon.

The man in the moon had a curious method of procuring cattle. He was in posses-
sion of 11 magical square carpets which would expand to accomodate any square
number of cows, and waft them up to the moon on a space elevator. (In order that the
load balance, the carpets were required to bear the same number of cattle each.)
Once there, they had to fit inside a square fence with his dog, which is to say that
the total number of creatures had also to be square.

Problem 1. What is the smallest number of cattle the man in the moon could have
purchased?

Problem 2. Unfortunately, that small number can’t explain the present day moon-
scape, created when the cows jumped over the fence to escape the vicious moon-
dog and gobbled up all the grass. It is believed that their number was in the millions.
Can you deduce the exact number of cattle now? (Don’t spend too much time on
this until you’ve seen page 3.)
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II. CATTLE OF THE RED PLANET

The ranchers on Mars, meanwhile, had their own problems: their herd kept growing,
and the Martian grass didn’t grow back once it was eaten. So they kept having to
add more and more pens, using those already built to form one side of the next
enclosure. Some were square, like those built by the ranchers Fibonacci and Lucas:

(squares labeled by side−length)
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Others were rectangular (rancher Pell), with longer edges a = 2A times the shorter:
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or even triangular (rancher Padovan):
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Problem 3. In each case, to what number r did the ratio `k+1

`k
of side-lengths tend?

(For rectangles, only use the shorter side-lengths; for triangles, just find an equation
for r.)



III. FALLING THROUGH THE CRACKS

According to recent news, ranchers in California have been trying to account for cat-
tle who disappeared into gigantic smoking crevices following the latest earthquake.
The cows had been arranged evenly in a grid pattern with positive-integer coordi-
nates (x, y); and the ground opened up lear L.A. along the hyperbolas x2−5y2 = ±4:
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Problem 4. There’s a secret relationship between the vanishing cows and the first
two squares of fence-lengths on Mars. Can you see the link? Use it to help the
not-so-jolly ranchers find coordinates of a few more missing cattle.

Problem 5. What if we change the equation to x2 − dy2 = ±1, with d = A2 + 1? (Try
A = 3, and use the rectangular fences.) If (x1, y1) and (x2, y2) pinpoint two missing
cows, what happens when you multiply x1 + y1

√
d and x2 + y2

√
d? (Try it first with

both coordinates equal to (A, 1).)

Problem 6. Near Sacramento, the chasm in the field is described by the equation
x2 − 11y2 = 1. One cow has clearly been swallowed up at (x, y) = (10, 3). Can you
use this to determine the number of cattle on the moon (Problem 2)?



IV. RING AROUND THE BOVINES

The points in the (x, y)-plane with integer coordinates make up what is called the
square lattice.

Problem 7. How many lattice points / cows are enclosed by a circle / fence of radius
r, centered at the origin? Try it using a compass and graph paper for small r ( = 1,
2, 3, etc.): record A(r) = area of circle, L(r) = lattice points (in, not on, the circle),
and E(r) = the “error” |A(r)− L(r)|. Then try to guess an upper bound on the error
(or look up the “Gauss circle problem”!).
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Now the square lattice is a bit boring. We can make all kinds of lattices as follows:
let w1 = (a, b) and w2 = (c, d) be two points, and simply take all points of the form

n1w1 + n2w2 = (n1a+ n2c, n1b+ n2d).

The quantity det(L) := ad− bc is called the determinant of the lattice L generated by
w1 and w2. It gives the area of the parallelogram in the picture:

det(L) = 3
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For large radius r, the circle encloses approximately πr2/ det(L) lattice points.



V. MINKOWSKI’S BOUND

A lattice polygon is one whose vertices are points of our lattice L. It is convex if the
segment connecting any two points in the polygon is itself contained in the polygon.

Problem 8. How many convex lattice polygons can you draw in the square lattice
(on graph paper) that only enclose one point? (There are a lot!) What if we insist
that they be symmetric about this point? Which one has the largest area?

Problem 9. For any lattice L: if S is a convex set, symmetric about the origin (0, 0),
and containing no other lattice points (don’t count ones on the boundary), what do
you think is the maximum possible area of S?

Deduce that any lattice L contains a point within
√
2 det(L) units of the origin. [Hint:

use the square with points (t1, t2) with −
√

det(L) ≤ ti ≤
√

det(L).]

Problem 10. Let L be the lattice generated by w1 = (50,−34) and w2 = (268,−182).
These are obviously both pretty far from (0, 0). Does L have (nonzero) points closer
to (0, 0)? How close? Can you find some?



VI. GAUSS’S ALGORITHM

The w1 and w2 in Problem 10 are a bad generating set. Why? Suppose someone
at (x, y) = (1, 0) asks you the way to the nearest lattice point. We can write their
location as

(1, 0) = −91
6
w1 +

17

6
w2

and round the coefficients to their nearest integers: −91
6 ≈ −15, 17

6 ≈ 3. This sug-
gests the closest lattice point would be

−15w1 + 3w2 = (54,−36).

Trouble is, the actual nearest lattice point is (0, 0).

Fortunately, Gauss wrote an algorithm for finding a good generating set for our lat-
tice L: begin by setting v1 := w1, v2 := w2; and write (a, b) · (c, d) := ac + bd.
Now

• if v2 · v2 < v1 · v1, swap v1 with v2;
• compute M = nearest integer to v1·v2

v1·v1
;

• if M = 0, stop: v1,v2 is the good set;
• otherwise, replace v2 with v2 −Mv1;
• return to first step.

Problem 11. Apply Gauss’s algorithm to produce a good generating set v1,v2 for
our lattice L. What happens when you write (1, 0) = αv1 + βv2 and round the
coefficients?



VII. BREAKING A LATTICE-BASED

CRYPTOSYSTEM

In a simple case of the GGH (= Goldreich, Goldwasser, and Halevi) cryptosystem,
Alice has a good generating set v1,v2 for a lattice L, but broadcasts a bad gener-
ating set w1,w2. Now Bob encodes a message as follows: first, turn each pair of
letters into a pair of numbers m1,m2 by using Table 1:

Then send the coordinate

m1w1 +m2w2 + (r1, r2)

to Alice, where r1 and r2 are small random numbers (like (1, 0) on the last page). If
the coordinate is intercepted, and written as µ1w1 + µ2w2, then rounding µ1 and µ2
off will give garbage, because w1 and w2 are bad generators for the lattice.

In theory, only Alice knows the good generators, so only she can decode the mes-
sage. She does this by writing the transmitted coordinate as η1v1 + η2v2, rounding
η1, η2 to n1, n2, and finally rewriting n1v1 + n2v2 as a sum m1w1 +m2w2 to recover
the message m1,m2. Unfortunately, the “theory” has not accounted for the fact that
you have a lattice-reduction algorithm, thanks to Gauss!

Here is the encrypted message Bob sent Alice:

(25977,−17644), (24286,−16497), (25425,−17270), (21339, 14494).

It is the solution to a Cowculus question: what is the first derivative of a heifer?

Problem 12. Decrypt Bob’s message!


	I. The cows of the moon
	II. Cattle of the red planet
	III. Falling through the cracks
	IV. Ring around the bovines
	V. Minkowski's bound
	VI. Gauss's algorithm
	VII. Breaking a lattice-based cryptosystem

